Answer:
Step-by-step explanation:
![\huge \sqrt[5]{ {z}^{4} {z}^{ - \frac{3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{4 - \frac{3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{ \frac{8 - 3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{ \frac{5}{2} } } \\ \\ = \huge {z}^{ \frac{5}{2} \times \frac{1}{5} } \\ \\ = \huge {z}^{ \frac{1}{2} }](https://tex.z-dn.net/?f=%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B4%7D%20%7Bz%7D%5E%7B%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B4%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%20%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B%20%5Cfrac%7B8%20-%203%7D%7B2%7D%20%20%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B%20%5Cfrac%7B5%7D%7B2%7D%20%20%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%5Chuge%20%20%20%7Bz%7D%5E%7B%20%5Cfrac%7B5%7D%7B2%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%5Chuge%20%20%20%7Bz%7D%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20)
The company will have a total number of 531 employees
Answer:
d= all the x values
r=all the y values
Step-by-step explanation:
The number 12 is missing in the data set.
<u>Step-by-step explanation</u>:
- The numbers are 9,12,16,18,23.
- The missing number is assumed to be 'x'
Mean = Sum of the integers / Total number of integers.
15 = (9+12+16+18+23+x) / 6
15 = (78+x) / 6
90 = 78+x
x = 90-78
x = 12
4, 5, and 7 are mutually coprime, so you can use the Chinese remainder theorem right away.
We construct a number
such that taking it mod 4, 5, and 7 leaves the desired remainders:

- Taken mod 4, the last two terms vanish and we have

so we multiply the first term by 3.
- Taken mod 5, the first and last terms vanish and we have

so we multiply the second term by 2.
- Taken mod 7, the first two terms vanish and we have

so we multiply the last term by 7.
Now,

By the CRT, the system of congruences has a general solution

or all integers
,
, the least (and positive) of which is 27.