1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
3 years ago
14

Antoine and Tess have a disagreement over how to compute a 15% gratuity on $46.00.

Mathematics
2 answers:
lana66690 [7]3 years ago
6 0

Answer:

Step-by-step explanation:

Gnom [1K]3 years ago
3 0

Answer:

B-“Tess, you found 20% of the number because you added 10% and 10%. You need to add 10% to One-half of 10%. Add $4.60 and $2.30 to get $6.90, which is the 15% gratuity.”

Step-by-step explanation:

got it rigt on edge 2021.

You might be interested in
A researcher selects a random sample of size n from a population and uses the collected data to compute a 95% confidence interva
Karo-lina-s [1.5K]

Answer:

I wish I know the answer

Step-by-step explanation:

lemme try again

7 0
3 years ago
Rearrange the formula A = \pi r ^ ( 2) for r
tatyana61 [14]
Consider re-writing this formula as "A = pi*r^2."  The backslash symbol "\" is unnecessary.

If A = pi*r^2, and we wish to solve for r, then divide both sides by pi:

A/pi = r^2

Taking the square root of both sides,   sqrt(A/pi) = r (r must be positive in this situation).
3 0
3 years ago
One hundred items are simultaneously put on a life test. Suppose the lifetimes
romanna [79]

Answer:

a) \mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}

b) \mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}

Step-by-step explanation:

Given:

The lifetimes of the individual items are independent exponential random variables.

Mean = 200 hours.

Assume, Ti be the time between ( i-1 )st and the ith failures. Then, the T_{i} are independent with \mathrm{T}_{\mathrm{i}} being exponential with rate \frac{(101-i)}{200} .

Therefore,

a) E[T]=\sum_{i=1}^{5} E\left[\tau_{i}\right]

=\sum_{i=1}^{5} \frac{200}{101-i}

\therefore \mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}

b)

The variance is given by, \mathrm{Var}[\mathrm{T}]=\sum_{i=1}^{5} \mathrm{Var}[T]

\therefore \mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}

7 0
3 years ago
Five times the sum of a number and 6 is 48
MissTica
5(n+6)=48

5n+30=48

5n=18

n=18/5
4 0
3 years ago
Find the value of x shown below
irakobra [83]

Angles opposite to the equal sides of an isosceles triangle are equal, so the third angle in this triangle is also 61.  Now, you know all the angles in the triangle, you can use the Triangle Sum Theorem, which says that all the angles in a triangle add up to 180.

x + 61 + 61 = 180

x + 122 = 180

x = 58

Hope this helped!

7 0
3 years ago
Other questions:
  • How do i find slope that goes through (0,0) and (-2,7)
    11·1 answer
  • Please answer this question now
    5·2 answers
  • Use the triangle shown on the right to answer the question. According to the law on sines, which of the following statement(s) a
    5·2 answers
  • A building has 48 apartments and 66 bathrooms. What is the ratio of apartments to bathrooms in the building? *
    7·1 answer
  • Given: vu=st, sv=tu prove vx=xt
    6·1 answer
  • Which number represents the sum of -8 and -i?
    7·1 answer
  • You are ordering planks of
    7·1 answer
  • Fasssssssssssssst answer mark as brain list​
    5·2 answers
  • Select the correct answer.
    11·1 answer
  • Please explain your answer :)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!