1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
3 years ago
9

(PHOTO) PLEASE HELPPP I HAVE NO CLUE

Mathematics
1 answer:
emmainna [20.7K]3 years ago
7 0

Answer:

so what grades work

Step-by-step explanation:

someone help in the comments

srry i need pts

You might be interested in
<img src="https://tex.z-dn.net/?f=%5Cmathsf%7BIf~~x%3D10%5E%7B%5Cdfrac%7B1%7D%7B1-log~z%7D%7D~~and~~y%3D10%5E%7B%5Cdfrac%7B1%7D%
alukav5142 [94]
\large\begin{array}{l} \textsf{Prove the following theorem:}\\\\ &#10;\textsf{If }\mathsf{x=10^\frac{1}{1-\ell og\,z}}\textsf{ and &#10;}\mathsf{y=10^{\frac{1}{1-\ell og\,x}},}\textsf{ then &#10;}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}.}\\\\\\ &#10;\bullet~~\textsf{From the &#10;hypoteses, we must have:}\\\\ \mathsf{\ell og\,z\ne 1~\Rightarrow~z>0~~and~~z\ne &#10;10\qquad(i)}\\\\ \mathsf{\ell og\,x\ne 1~\Rightarrow~x>0~~and~~x\ne &#10;10\qquad(ii)} \end{array}

__________


\large\begin{array}{l} \textsf{Let's continue with the proof, using (i) and (ii) everytime}\\\textsf{it's needed.}\\\\ \textsf{If }\mathsf{x=10^{\frac{1}{1-\ell og\,z}},}\textsf{ then}\\\\ \mathsf{\ell og\,x=\ell og\!\left(10^{\frac{1}{1-\ell og\,z}}\right )}\\\\ \mathsf{\ell og\,x=\dfrac{1}{1-\ell og\,z}}\\\\ \mathsf{-\ell og\,x=\dfrac{-1}{1-\ell og\,z}} \end{array}


\large\begin{array}{l}&#10; \mathsf{1-\ell og\,x=1+\dfrac{-1}{1-\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,x=\dfrac{1-\ell og\,z}{1-\ell og\,z}+\dfrac{-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{1-\ell og\,z-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{-\ell og\,z}{1-\ell &#10;og\,z}}\qquad\textsf{(using (i) below)} \end{array}


\large\begin{array}{l} \textsf{Since }\mathsf{\ell og\,x\ne 1,}\textsf{ both sides of the equality above will}\\\textsf{never be zero. Therefore, both sides can be inverted:}\\\\\textsf{Taking the reciprocal of both sides,}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1}{~\frac{-\ell og\,z}{1-\ell og\,z}~}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{\ell og\,z-1}{\ell og\,z}} \end{array}


\large\begin{array}{l} \textsf{From the last line above, we get as an immediate condition}\\\textsf{for z:}\\\\ \mathsf{\ell og\,z\ne 0~~\Rightarrow~~z\ne 1\qquad(iii)}\\\\\\ \textsf{Taking exponentials with base 10,}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,x}}=10^{\frac{1-\ell og\,z}{-\ell og\,z}}} \end{array}


\large\begin{array}{l}&#10; \textsf{But }\mathsf{10^{\frac{1}{1-\ell &#10;og\,x}}=y.}\textsf{ So we get}\\\\ &#10;\mathsf{y=10^{\frac{1-\ell og\,z}{-\ell og\,z}}}\\\\\\\textsf{then}\\\\ \mathsf{\ell og\,y=\ell og\!\left(10^{\frac{1-\ell og\,z}{-\ell&#10; og\,z}}\right)}\\\\ \mathsf{\ell og\,y=\dfrac{1-\ell og\,z}{-\ell &#10;og\,z}}\\\\ \end{array}

\large\begin{array}{l} &#10;\mathsf{-\ell og\,y=-\,\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ &#10;\mathsf{-\ell og\,y=\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell&#10; og\,y=1+\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,y=\dfrac{\ell og\,z}{\ell og\,z}+\dfrac{1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{\ell og\,z+1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{1}{\ell &#10;og\,z}}\qquad\textsf{(using (iii) below)} \end{array}


\large\begin{array}{l} \\\\ \textsf{Notice that the right side of the equality above is a nonzero}\\\textsf{number, so it is possible to take the reciprocal of both sides:}\\\\ \mathsf{\dfrac{1}{1-\ell og\,y}=\ell og\,z}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=10^{\ell og\,z}}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=z}\\\\ \boxed{\begin{array}{c}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}} \end{array}}\\\\\\ \textsf{which is what had to be shown.} \end{array}


If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2105740


\large\begin{array}{l} \textsf{Any doubt? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}


Tags: <em>logarithm log proof statement theorem exponential base condition hypothesis</em>

3 0
3 years ago
What is 7-10•7÷7? I need help​
zmey [24]
Do pemdas the answer all together is = 3
3 0
3 years ago
Read 2 more answers
Can you help me please I put the picture
Hitman42 [59]

Answer:

I think it would be B.

Sorry if im wrong

Step-by-step explanation:

Have a great day!

7 0
3 years ago
Read 2 more answers
So sorry I really need help
Ilya [14]

Answer:

(2 x 2 x 2) x (0.03125)

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Pls find x!!!!!!!!!!!!!!!!!!!!!
Andrews [41]

Answer:

120°

Step-by-step explanation:

The angle just below 'x' is 40°    (alternate angles/parallel lines)

40 + x + 20 = 180  ( straight line)

x = 120°

6 0
2 years ago
Other questions:
  • Subtract (5y3 + 6y + 3y4) from (4y4 - 8y3).
    12·2 answers
  • How do I solve this?
    11·1 answer
  • Which statement about the asymptotes is true with respect to the graph of this function? f(x) = 3x2 – 3 x2 – 4
    12·1 answer
  • Chuck has 6$ and he spends 1/5 of his money on candy
    6·2 answers
  • A cooler contains nine bottles of sports drink: 4 lemon-lime flavored, 3 orange flavored, and 2
    8·1 answer
  • IN YOUR OWN WORDS How do you use mental math to multiply two
    6·1 answer
  • A person places $127 in an investment account earning an annual rate of 4.2%, compounded continuously. Using the formula V = P e
    12·2 answers
  • 15/32 x 16/27=?? Help
    14·1 answer
  • Please help!! markup and markdown word problems.
    15·1 answer
  • What is 6(x+?)= 6x + 30<br> ??????????
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!