Answer:
<em>the mass of one helium nucleus should be</em> <em>less than the mass of four hydrogen nuclei.</em>
Explanation:
Deep inside the core of the Sun, enough protons can collide into each other with enough speed that they stick together to form a helium nucleus and generate a tremendous amount of energy at the same time. This process is called nuclear fusion.
The mass-to-energy conversion is described by Einstein's famous equation:
E = mc2, or, in words, energy equals mass times the square of the velocity of light. Because the velocity of light is a very large number, this equation says that lots of energy can be gained from using up a modest amount of mass.
Photons In the proton-proton chain reaction, hydrogen nuclei are converted to helium nuclei through a number of intermediates. The reactions produce high-energy photons (gamma rays) that move through the "radiative layer" surrounding the core. This layer takes up 60 percent of the radius of the Sun. It takes a million years for energy to get through this layer into the "convective layer", because the photons are constantly intercepted, absorbed and re-emitted. In the core, the helium nuclei make up 62% of the mass (the rest is still hydrogen). The radiative and convective layers have about 72% hydrogen, 26% helium, and 2% heavier elements (by mass). The energy produced by fusion is then transported to the solar surface and emitted as light or ejected as high-energy particles.
Answer:about 200,000 years ago that humans existed on earth.
Explanation:Geologic time refers to the planet's changing geology. The earliest fossils of modern humans are from the middle Paleolithic about 200,000 years ago such as the omo remains from Ethiopia and the fossil of herto classified equally as homosapiens equally from Ethiopia.
Answer:
The correct option is (A).
Explanation:
When the temperature of the hot solid object increases then the radiation which emits from it gets shifted to smaller wavelength or higher frequencies. The hot appears red color.
The total energy emitted of a hot solid object is directly proportional to the fourth power of the temperature of the black body.
For example, when we switch on the light bulb, initially the radiation of the bulb appears dimmer. Then, it will become brighter. Then, it will turn yellow and then it becomes even white.
The color of the light emitted by a hot solid object depends on the temperature of the object.
Therefore, the correct option is (A).
The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4