C. Radiosonde is the answer
the above mentioned is not correct
Answer:
t = 12,105.96 sec
Explanation:
Given data:
weight of spacecraft is 2000 kg
circular orbit distance to saturn = 180 km
specific impulse = 300 sec
saturn orbit around the sun R_2 = 1.43 *10^9 km
earth orbit around the sun R_1= 149.6 * 10^ 6 km
time required for the mission is given as t
![t = \frac{2\pi}{\sqrt{\mu_sun}} [\frac{1}{2}(R_1 + R_2)]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%5Cmu_sun%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28R_1%20%2B%20R_2%29%5D%5E%7B3%2F2%7D)
where
is gravitational parameter of sun = 1.32712 x 10^20 m^3 s^2.![t = \frac{2\pi}{\sqrt{ 1.32712 x 10^{20}}} [\frac{1}{2}(149.6 * 10^ 6 +1.43 *10^9 )]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%201.32712%20x%2010%5E%7B20%7D%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28149.6%20%2A%2010%5E%206%20%2B1.43%20%2A10%5E9%20%29%5D%5E%7B3%2F2%7D)
t = 12,105.96 sec
Answer:
Explanation:
Since this is a distance v time graph, the slope of the line from 1s to 3s is the velocity. However, it looks like, at t=3, the velocity is 0, so getting the definite velocity is not going to happen. We can estimate it as closely as possible. Since the line is tending from the upper left to the lower right, the slope is negative, so the velocity is also negative. That leaves only C or D as our answers. And the slope is closer to -1 than to -5, so choice D. is the one you want.
It’ll be 200 meters West because 500-300=200 and The west direction has the greatest force you could say ... Anytime you have a question asking about displacement you subtract then use the direction with the greatest number ..
A) 10÷8.5
b) 120÷10
c) answer A÷Answer B.
sure on first two, not so sure on C.