Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
The first most obvious thing to note is when naming transitional metals, you have to state its charge with roman numerals (except for 1 if I remember correctly). For example, Iron (lll), iron has a charge of 3.
<h3>Answer </h3>
After another 5730 years ( three half lives or 17190 years) 17.5 /2 = 8.75mg decays and 8.75g remains left. after three half lives or 17190 years, 8.75 g of C-14 will be
Explanation:
hope this help
Answer: 34
Explanation: I did this and that’s the answer
Answer:
The ground state configuration is the lowest energy, most stable arrangement. An excited state configuration is a higher energy arrangement (it requires energy input to create an excited state). Valence electrons are the electrons utilised for bonding.
or the
FIGURE 5.9 The arrow shows a second way of remembering the order in which sublevels fill. Table 5.2 shows the electron configurations of the elements with atomic numbers 1 through 18.
Element Atomic number Electron configuration
sulfur 16 1s22s22p63s23p4
chlorine 17 1s22s22p63s23p5
argon 18 1s22s22p63s23p6
or the
Two electrons
Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its electron configuration is 1s22s1.
Explanation:
<em>Choose </em><em>your </em><em>answer </em>
<em>brainlilest </em><em>me</em>
<em><u>CARRY </u></em><em><u>ON </u></em><em><u>LEARNING</u></em>