Answer:
Chlorine is limiting reactant
Explanation:
Based on the reaction:
Cl₂ + 2NaOH → NaClO + NaCl + H₂O
<em>1 mole of chlorine reacts with 2 moles of NaOH</em>
<em />
To find limiting reactant, we need to determine the moles of the reactants:
<em />
<em>Moles Cl₂ -Molar mass: 70.9g/mol-:</em>
800lb Cl₂ * (453.6g / 1lb) * (1mol / 70.90g) =
5118 moles Cl₂
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
1200lb NaOH * (453.6g / 1lb) * (1mol / 40g) =
13608 moles NaOH
For a complete reaction of 13608 moles of NaOH you need:
13608 moles NaOH * (1mol Cl₂ / 2 moles NaOH) = 6804 moles of Cl₂
As the solution contains just 5118 moles of chlorine,
<h3>Chlorine is limiting reactant</h3>
This solute-solvent interaction will release energy into the surroundings and makes the beaker warm.
<u>Explanation:</u>
The sulfuric acid is dissolved in water and it formed a solvation sphere of water molecules around the sulphur ions. So on stirring the beaker is getting warm. As the beaker is getting warm, this means the reaction occuring between sulfuric acid and water is exothermic reaction.
And so the energy is released into the surroundings. The energy released came from the breaking of bonds of sulfuric acid, as the acid is getting dissociated in water.
So, the release of energy in the surroundings lead to the warming of the beaker. Hence, the solute-solvent interaction release energy into the surroundings.