Answer:
0.56 g
Explanation:
<em>A chemist determines by measurements that 0.020 moles of nitrogen gas participate in a chemical reaction. Calculate the mass of nitrogen gas that participates.</em>
Step 1: Given data
Moles of nitrogen gas (n): 0.020 mol
Step 2: Calculate the molar mass (M) of nitrogen gas
Molecular nitrogen is a gas formed by diatomic molecules, whose chemical formula is N₂. Its molar mass is:
M(N₂) = 2 × M(N) = 2 × 14.01 g/mol = 28.02 g/mol
Step 3: Calculate the mass (m) corresponding to 0 0.020 moles of nitrogen gas
We will use the following expression.
m = n × M
m = 0.020 mol × 28.02 g/mol
m = 0.56 g
Answer:
_2Mg + _O2 --≥2MgO this is balanced
Answer:
B and D could be true
Explanation:
A volume of sodium hydroxide less than expected could occurs for two reasons:
The real concentration of sodium hydroxide was higher than expected or the amount of vinegar added was less than expected:
A. The sodium hydroxide solution had been allowed to stand exposed to the air for a long time prior to the titration. FALSE. A long expose to the air decreases concentration of the NaOH.
B. The volumetric flask used to prepare the diluted vinegar solution was rinsed with water prior to use. TRUE. You add a less amount of vinegar doing you require less amount of NaOH than expected.
C. The burette used to deliver the sodium hydroxide solution was rinsed with water prior to use. FALSE. Thus, you add a less amount of NaOH than expected. To explain the matter, you add more NaOH than expected.
D. The pipette used to deliver the vinegar solution was rinsed with water prior to use. TRUE. Again, you are adding a less amount of Vinegar than expected doing the necessary NaOH during titration less than expected
Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)


How many grams Carbon in 1 moles? The answer is 12.0107.
<span>We assume you are converting between </span>grams Carbon<span> and </span>mole.
You can view more details on each measurement unit:
molecular weight of Carbon<span> or </span>moles
<span>The molecular formula for Carbon is </span>C.
<span>The SI base unit for </span>amount of substance<span> is the mole.</span>
1 grams Carbon is equal to 0.0832590939745 mole.
Note that rounding errors may occur, so always check the results.
Use this page to learn how to convert between grams Carbon and mole.
<span>Type in your own numbers in the form to convert the units!
</span>