Answer:
Line the numbers from smallest to largest the subtract the smallest from the largest numbers.
The Ammeter is used to detect and measure current or amperage. Also a more common tool now used is a multimeter that detects and measures voltage, current, and resistance.
Any questions please just ask. Thank you.
If we use the equation:
N2 + 3H2 --> 2NH3
Then
1 mol of Nitrogen required 3 moles of Hydrogen
x mols : 6.34mols
X = 6.34/3
X = 2.11 moles of Nitrogen are required.
From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.
Answer:
Cart A
Explanation:
Momentum can be computed by finding the product of mass and velocity. To solve this, you can use the formula below to find the greatest momentum:
p = mv
where:
p = momentum (kgm/s) m = mass (kg) v = velocity (m/s)
Because carts are moving along with the weights, we need to consider the whole system. This means that you need to add in the masses and the mass of the cart.
<u>Cart A:</u>
m = 200kg + 0 kg = 200 kg
v = 4.8 m/s
p = 200kg x 4.8 m/s = 960 kg-m/s
<u>Cart B:</u>
m = 200kg + 20 kg = 220 kg
v = 4.0 m/s
p = 220kg x 4.0 m/s = 880 kg-m/s
<u>Cart C:</u>
m = 200kg + 40 kg = 240 kg
v = 3.8 m/s
p = 240kg x 3.8 m/s = 912 kg-m/s
<u>Cart D:</u>
m = 200kg + 60 kg = 260 kg
v = 3.5 m/s
p = 260kg x 3.5 m/s = 910 kg-m/s
As you can see, Cart A has the greatest momentum.