Answer:
3. less than the kinetic energy of thesilly putty before the collision.
Explanation:
This is because kinetic energy is dependent on the mass and velocity of an object. Mathematically, it is given as:
K. E. = ½*m*v²
Where m = mass
v = velocity
In the case of the silly putty, we know that the masses of the ball of silly putty and the bowling ball are conserved, hence, the kinetic energy depends solely on the velocity at which the object moves.
After the collision with the bowling ball, because of how heavy a bowling ball is, the speed of the silly putty and bowling ball will definitely be less than the speed of the silly putty before collision, i. e. u > v.
Hence, the kinetic energy after collision will be less than the kinetic energy before collision.
It’s C
Because C is a reflection which reflects something such as mirror
Hope this helps! •~•
D. Ted associated being asked a question with embarrassment.
German physicist Albert Betz (in 1919) demonstrated that the highest efficiency you can achieve with a wind turbine is around 59%
We would have to analyze the design of an specific turbine to determine its efficiency, however it is unlikely to achieve 50% , as todays turbines have an average efficiency in the 20-35%
The answer would be around 25%
Answer:
Explanation:
We can use the conservation of the angular momentum.


Now the Inertia is I(professor_stool) plus mR², that is the momentum inertia of a hoop about central axis.
So we will have:

Now, we just need to solve it for ω.

I hope it helps you!