Answer:
I₂ = 2.13 x 10⁻⁸ W/m²
Explanation:
given,
increase in sound level = 28.1 dB
frequency of the sound = 250 Hz
intensity = 3.3 x 10⁻¹¹ W/m²
Intensity delivered = ?
the difference of intensity level is give as






I₂ = 645.65 I₁
I₂ = 645.65 x 3.3 x 10⁻¹¹
I₂ = 2.13 x 10⁻⁸ W/m²

Sokka is here to help!!
The answer is...
<h2>D. Counter-arguments lead to circular logic in your argument.</h2>
Because, I am right. :)
Hopefully, this helps you!!

The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F
<h3>How to determine the coefficient of linear expansion</h3>
From the question given above, the following data were obtained
- Original diameter (L₁) = 10 m
- Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
- Change in temperature (∆T) = 90 °F
- Coefficient of linear expansion (α) =?
The coefficient of linear expansion can be obtained as illustrated below:
α = ∆L / L₁∆T
α = 0.015 / (10 × 90)
α = 0.015 / 900
α = 1.67×10¯⁵ /°F
Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F
Learn more about coefficient of linear expansion:
brainly.com/question/28293570
#SPJ1
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance:
You don't convert kilograms to newtons. By the time you've heard of these units, you know that 'kilogram' is a unit of mass, 'newton' is a unit of force or weight, and that mass and weight are different things.
Mass and force are <u>related</u> by Newton's second law:
Force = Mass x acceleration .
From this simple formula, you can see that in order to relate a mass to a force, you need to know an acceleration. And if the acceleration changes, then the relationship between the force and the mass also changes. So there's no direct conversion.
ON EARTH ONLY, one kilogram of mass <em>weighs</em> 9.8 newtons. The acceleration that connects them is the acceleration of gravity on Earth. In other places, with different gravitational accelerations, 1 kilogram weighs more or less newtons.
But they don't convert directly. That would be like asking "How do you convert miles to miles-per-hour ?"