1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
10

A particle moving uniformly along the x axis is located at 11.3 m at 0.588s and at 3.38 m at 4.67s. Find the displacement during

this time intervals.
Physics
1 answer:
Ad libitum [116K]3 years ago
5 0

The displacement is

     (position at the end of the time interval)
minus
     (position at the beginning of the time interval).

Displacement = (3.38m - 11.3m) =  -7.92 meters.

The time labels aren't needed to calculate displacement. 
They're only there to confuse us and to see whether we
really know what we're doing.

You might be interested in
You and your friends are having a discussion about weight. He/she claims that he/she weighs less on the 100th floor of a buildin
Viktor [21]

Answer:

if the weight theoretically decreases at this height, but in a fraction of 10⁻⁵, which is not appreciable in any scale, therefore, the reading of the scale in the two places is the same.

Explanation:

The weight of a person in the force with which the Earth attracts the person, therefore can be calculated using the law of universal attraction

          F = G m M / r²

Where m is the mass of the person, M the masses of the earth

Let's call the person's weight at ground level as Wo and suppose the distance to the center of the Earth is Re

            W₀ = G m M / Re²

In the calculation of the weight of the person on the 100th floor the only thing that changes is the distance

          r = Re + 100 r₀

Where r₀ is the distance between the floors, which is approximately 2.5 m, so the distance is

         r = Re + 250

We substitute

     W = G m M / r²

      W = G m M / (Re + 250)²

The value of Re is 6.37 10⁶ m, so we can take it out as a factor and perform a serial expansion of the remaining fraction

      W = G m M / Re² (1+ 250 / Re)²

      (1 + 250 / Re)⁻² = 1 + (-2) 250 / Re + (-2 (-2-1)) / 2 (250 / Re)² +….

The value of the expression is

      (1 + 250 / Re)⁻² = 1 -2 250 / 6.37 10⁶ -30 (250 / 6.37)² 10⁻¹² + ...

We can see that the quadratic term is very small, which is why we despise it, we substitute in the weight equation

      W = G m M / Re² (1 - 78.5 10⁻⁶)

Remains

     W = Wo (1 - 7.85  10⁻⁵)

We can see that if the weight theoretically decreases at this height, but in a fraction of 10⁻⁵, which is not appreciable in any scale, therefore, the reading of the scale in the two places is the same.

4 0
3 years ago
Read 2 more answers
A solid circular shaft and a tubular shaft, both with the same outer radius of c=co = 0.550 in , are being considered for a part
Norma-Jean [14]

Answer:

The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp

Explanation:

<u>Polar moment of Inertia</u>

(I_p)s = \frac{\pi(0.55)4}2

      = 0.14374 in 4

<u>Maximum sustainable torque on the solid circular shaft</u>

T_{max} = T_{allow} \frac{I_p}{r}

         =(14 \times 10^3) \times (\frac{0.14374}{0.55})

         = 3658.836 lb.in

         = \frac{3658.836}{12} lb.ft

        = 304.9 lb.ft

<u>Maximum sustainable torque on the tubular shaft</u>

T_{max} = T_{allow}( \frac{Ip}{r})

          = (14 \times10^3) \times ( \frac{0.13101}{0.55})

          = 3334.8 lb.in

          = (\frac{3334.8}{12} ) lb.ft

          = 277.9 lb.ft

<u>Maximum sustainable power in the solid circular shaft</u>

P_{max} = 2 \pi f_T

          = 2\pi(2.1) \times 304.9

          = 4023.061 lb. ft/s

          = (\frac{4023.061}{550}) hp

          = 7.315 hp

<u>Maximum sustainable power in the tubular shaft</u>

P _{max,t} = 2\pi f_T

            = 2\pi(2.1) \times 277.9

            = 3666.804 lb.ft /s

            = (\frac{3666.804}{550})hp

            = 6.667 hp

7 0
3 years ago
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
a 5.0 kg ball is dropped from a 2.5 m high window. what is the velocity of the ball just before it hits the ground?
julsineya [31]

Answer:

Approximately 7.0\; \rm m \cdot s^{-1}.

Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.

Explanation:

Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant g = 9.81 \; \rm m \cdot s^{-2} near the surface of the earth.

For an object that is accelerating constantly,

v^2 - u^2 = 2\, a \, x,

where

  • u is the initial velocity of the object,
  • v is the final velocity of the object.
  • a is its acceleration, and
  • x is its displacement.

In this case, x is the same as the change in the ball's height: x = 2.5\; \rm m. By assumption, this ball was dropped with no initial velocity. As a result, u = 0. Since the ball is accelerating due to gravity, a = 9.81\; \rm m \cdot s^{-2}.

v^2 - u^2 = 2\, g \cdot h.

In this case, v would be the velocity of the ball just before it hits the ground. Solve for

v^2 = 2\, a\, x + u^2.

\begin{aligned}v &= \sqrt{2\, a\, x + u^2} \\ &= \sqrt{2\times 9.81 \times 2.5 + 0} \\ &\approx 7.0\; \rm m\cdot s^{-1}\end{aligned}.

3 0
2 years ago
A feather is dropped onto the surface of the moon. How far will the feather have fallen if it reaches the surface in 9.00 second
Natali5045456 [20]

The feather's vertical position y is determined by

y=\dfrac12g_{\text{moon}}t^2

We take the feather's starting position to be the origin, and the downward direction to be positive. Then

y=\dfrac12\left(1.63\,\dfrac{\mathrm m}{\mathrm s^2}\right)\left(9.00\,\mathrm s\right)^2=66.0\,\mathrm m

so the answer is D.

3 0
3 years ago
Other questions:
  • An empty bottle has a mass of 35.00 grams. When filled with water, it has a mass of 98.44 grams. Of the same bottle is filled wi
    11·1 answer
  • If you rub a balloon on a piece of fabric or carpeting and then hold it against your head, your hair can stand on end. Why does
    14·1 answer
  • Energy is defined as ____. a. ​movement of electrons b. ​capacity to store sugar c. ​the movement of atoms and molecules d. ​the
    13·1 answer
  • When a wave propagates through a medium the molecules of the medium?
    15·1 answer
  • How many atoms of hydrogen are in vitamin B
    8·1 answer
  • Please help me ;3 (ALSO REMEMBER IT SAYS SELECT TWO)
    6·2 answers
  • The energy of moving things are called​
    8·1 answer
  • If 3 cups are sitting outside on a hot summer day, which cup will gain the most heat? Cup A starts a little above freezing, Cup
    10·1 answer
  • When a falling body is at distance above the surface which is 4 times the Earth radius what is the acceleration due to Earth gra
    8·1 answer
  • An electron traveling at a velocity v enters a uniform magnetic field B. Initially, the velocity and field are perpendicular to
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!