The capacity to do work is said to be energy. It is a quantitative property and conserved quantity. It can exist in different forms such mechanical energy, sound energy, chemical energy etc. According to law of conservation of energy, energy can neither be created nor be destroyed implies there is no loss of energy occurs during any process or any reaction only conversion of energy takes place.
Temperature and pressure are not forms of energy, they are physical properties.
Hence, first option (1) is the correct answer i.e. chemical, mechanical, electromagnetic are three forms of energy.
Answer:
I think the answer is A. 1.98 x 10^2 g
Space between particles tend to increase during the application of heat or heating.
Answer:
Explanation:
<u>1) Mass of carbon (C) in 2.190 g of carbon dioxide (CO₂)</u>
- atomic mass of C: 12.0107 g/mol
- molar mass of CO₂: 44.01 g/mol
- Set a proportion: 12.0107 g of C / 44.01 g of CO₂ = x / 2.190 g of CO₂
x = (12.0107 g of C / 44.01 g of CO₂ ) × 2.190 g of CO₂ = 0.59767 g of C
<u />
<u>2) Mass of hydrogen (H) in 0.930 g of water (H₂O)</u>
- atomic mass of H: 1.00784 g/mol
- molar mass of H₂O: 18.01528 g/mol
- proportion: 2 × 1.00784 g of H / 18.01528 g of H₂O = x / 0.930 g of H₂O
x = ( 2 × 1.00784 g of H / 18.01528 g of H₂O) × 0.930 g of H₂O = 0.10406 g of H
<u>3) Mass of oxygen (O) in 1.0857 g of pure sample</u>
- Mass of O = mass of pure sample - mass of C - mass of H
- Mass of O = 1.0857 g - 0.59767 g - 0.10406 = 0.38397 g O
Round to four decimals: Mass of O = 0.3840 g
<u>4) Mole calculations</u>
Divide the mass in grams of each element by its atomic mass:
- C: 0.59767 g / 12.0107 g/mol = 0.04976 mol
- H: 0.10406 g / 1.00784 g/mol = 0.10325 mol
- O: 0.3840 g / 15.999 g/mol = 0.02400 mol
<u>5) Divide every amount by the smallest value (to find the mole ratios)</u>
- C: 0.04976 mol / 0.02400 mol = 2.07 ≈ 2
- H: 0.10325 mol / 0.02400 mol = 4.3 ≈ 4
- O: 0.02400 mol / 0.02400 mol = 1
Thus the mole ratio is 2 : 4 : 1, and the empirical formula is: