Answer:
Empirical formula will be (NH₄)₃PO₄, which matches the molecular formula
Explanation:
This is the reaction:
NH₃ + H₃PO₄ → 28.2% N, 20.8% P, 8.1% H, 42.9% O
In 100 g of compound we have:
28.2 g N
20.8 g of P
8.1 g of H
42.9 g of O
Now we divide each between the molar mass:
28.2 g / 14 g/mol = 2.01 mol
20.8 g / 30.97 g/mol = 0.671 mol
8.1 g / 1 g/mol = 8.1 mol
42.9 g / 16 g/mol = 2.68 mol
And we divide again between the lowest value of moles
2.01 mol / 0.671 mol → 3
0.671 mol / 0.671 mol → 1
8.1 mol / 0.671 mol → 12
2.68 mol / 0.671 mol → 4
Molecular formula will be: N₃PH₁₂O₄ → (NH₄)₃PO₄
Empirical formula will be (NH₄)₃PO₄, which matches the molecular formula
Answer:
False
Explanation:
The farther away a planet is, the colder it is.
Answer:
Al4C3 + 12H2O = 3CH4 + 4Al(OH)3
Explanation:
Not sure if any explanation is needed but always start with the most complex compound. In this case it is Al(OH)3. You can see that there is 4 Aluminiums on the other side so I would start by putting a 4 next to the Al(OH)3. This now gives me 12 Hydrogens and 12 Oxygens on the right side. I put a 3 next to the CH4 to balance the Carbons on the left side. This leaves me with 12 Oxygens and 24 Hydrogens on the right side. This ends up being perfect because I can put a 12 next to the H2O.
Answer:
The sample will be heated to 808.5 Kelvin
Explanation:
Step 1: Data given
Volume before heating = 2.00L
Temperature before heating = 35.0°C = 308 K
Volume after heating = 5.25 L
Pressure is constant
Step 2: Calculate temperature
V1 / T1 = V2 /T2
⇒ V1 = the initial volume = 2.00 L
⇒ T1 = the initial temperature = 308 K
⇒ V2 = the final volume = 5.25 L
⇒ T2 = The final temperature = TO BE DETERMINED
2.00L / 308.0 = 5.25L / T2
T2 = 5.25/(2.00/308.0)
T2 = 808.5 K
The sample will be heated to 808.5 Kelvin
Primary consumer just remember the “primary” (first) consumer so the one that eats a heterotroph