The focal length of a lens needed by a woman whose near point is 50cm from her eyes is 50cm.
To find the answer, we have to know about the focal length of correcting lens.
<h3>
How to find the focal length of
correcting lens?</h3>
- If x is the distance of nearest point of the defective eye and D is the least distance of distinct vision, then, the expression for focal length of the correcting lens will be,

- It is given that, the woman whose near point is 50cm from her eyes, assuming the least distance of distinct vision for a normal eye is 25cm. Thus, the focal length will be,

Thus, we can conclude that, the focal length of a lens needed by a woman whose near point is 50cm from her eyes is 50cm.
Learn more about the focal length here:
brainly.com/question/27915592
#SPJ9
Answer:
1. a) Draw a line towards the right side from the engine
b) This force pushes the boat forward and helps it accelerate further
2. a) Fixed volume for both solid and liquid
Compressible for only solid
Fixed shape is also for only Solid
b) The answer is 'c'
c) Solids, because they have their particles closely packed therefore they can be compressed (not so sure bout this answer)
• t2<span>). Furthermore, since there is no horizontal acceleration, the horizontal distance traveled by the projectile each second is a constant value - the projectile travels a horizontal distance of </span>20 meters<span> each second. This is consistent with the initial horizontal velocity of </span>20 m<span>/s.
</span>
Answer:
C. The sum remains the same.
Explanation:
The sum of the kinetic and potential energy remains the same as the all rolls from point A to E.
We know this based on the law of conservation of energy that is in play within the system.
The law of conservation of energy states that "energy is neither created nor destroyed within a system but transformed from one form to another".
- At the top of the potential energy is maximum
- As the ball rolls down, the potential energy is converted to kinetic energy.
- Potential energy is due to the position of a body
- Kinetic energy is due to the the motion of the body