It's just in the name! Accurate data is helpful, and correct, but reproducible data is all of that, and is able to be given to other people through different sources! At least, that's what my understanding of them are. Hope it helps!
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.
A proton has positive charge of 1, that is, equal but opposite to the charge of an electron. A neutron, like the name implies, is neutral with no net charge. The charge is believed to be from the charge of the quarks that make up the nucleons (protons and neutrons).
Answer:
Position =
behind the mirror
Nature = Virtual and Erect
Size =
: Diminished
Explanation:
Sign convention-Distance measured to the left of pole is negative and to the right of pole is positive.
Object distance = u = -20 cm
Focal length = f = Radius of curvature/2 = 30/2 = 15 cm
We have to use mirror formula to find image distance.

Since the image distance is positive, it is formed behind the mirror or a virtual image is formed.
Magnification = 

Height of the object = 5 cm
Height of the image = 
Since the height of the image is positive and less than the size of object,it is erect and diminished.
Answer:
0.83 m/s
Explanation:
FIrst of all, we have to find the time of flight, i.e. the time the baseball needs to reach the ground. This can be done by using the equation for the vertical motion:

where
h is the initial height
u = 0 is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
t is the time
Substituting h = 1.8 m and solving for t,

We know that the horizontal distance travelled by the ball is
d = 0.5 m
Therefore, we can find the horizontal velocity (which is constant during the whole motion):
