Answer:
a. True
Explanation:
Methyl red is an indicator widely used in quality control of oxides as Zinc oxide in the titration with sulfuric acid.
As is used in titrations of acid-base reactions the indicator change in colour. Is red when the pH < 4.4 (Acidic Solutions) and is yellow when pH > 6.2 (Neutral-Basic solutions).
A change in colour means the structure of the indicator is changing with pH. Thus, the answer is:
<h3>a. True
</h3>
NH3 is soluble in water because it has the same amount of intermolecular forces as water. NH3 is a polar molecule and water is a polar molecule so they dissolve each other. NCl3 does not dissolve in water because it is a nonpolar molecule which is different with water. NCl3 is nonpolar due to the difference in electronegativities between 3 atoms of Cl and 1 atom if N2.
Answer:
He developed the concept of concentric electron energy levels
Explanation:
Before Bohr's model, Rutherford's model was proposed. This model explains most of the properties of the atom but failed to explain the stability of the atom.
As per Rutherford's model, electrons revolve around the nucleus in the orbit.
But revolving electron in their orbit around nucleus would give up energy and so gradually move towards the nucleus and therefore, eventually collapse.
Bohr's proposed that the electrons around the nucleus move orbit of fixed energy called "stationary states". Electrons in these stationary states do not radiate energy.
Therefore, proposal of concentric electron energy levels refine the atomic models.
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J