Answer:
solution is clear solution while colloidal is between the solution and suspension. And in suspension particles are suspended.
Explanation:
In solution light can be passed without any scattering of light from solute particles while suspension is cloudy and having larger particle size than colloids, if suspension stands for a while particles will settle down easily.
In colloids light will scattered and dispersed by reflecting with large particles.
• Liquid at room temperature
•Gas at room temperature
• Argon has approximately the same solubility in water as oxygen and is 2.5 times more soluble in water than nitrogen. Argon is colorless, odorless, nonflammable and nontoxic as a solid, liquid or gas. Argon is chemically inert under most conditions and forms no confirmed stable compounds at room temperature.
when iron and oxygen the reactin form Fe2O3 balance equation for this is <span>4Fe + 3O2---> 2Fe2O3
9moles of O2 are needed to produce 6mol of Fe2O3 since the ratio of oxygen to iron(II)oxide is 3:2
hope its help</span>
A saturated solution is one in which no more solute is able to dissolve in a given solvent at a particular temperature. Some amount of the solute is left undissolved in the solution.
Unsaturated solution has solute in lower proportions than required to form a saturated solution.
Supersaturated solution has solute in amounts greater than a saturated solution.
We can take the help of solubility curve in order to find out the amount of a salt required to prepare a saturated solution of that salt at a particular temperature.
The solubility of KI at 10
is 136 g/ 100 mL water
The solubility of
at
is 21 g/100 mL water.
The solubility of
at
is 80 g/100 mL water.
The solubility of NaCl at
is 38 g/ 100 mL water.
So the correct answer will be KI, as it would need 136 g KI / 100 mL water to form a saturated solution at
.So, if we have 80g KI/ 100mL water it would be an unsaturated solution.
Answer:
The concentration of chloride ion is 
Explanation:
We know that 1 ppm is equal to 1 mg/L.
So, the
content 100 ppm suggests the presence of 100 mg of
in 1 L of solution.
The molar mass of
is equal to the molar mass of Cl atom as the mass of the excess electron in
is negligible as compared to the mass of Cl atom.
So, the molar mass of
is 35.453 g/mol.
Number of moles = (Mass)/(Molar mass)
Hence, the number of moles (N) of
present in 100 mg (0.100 g) of
is calculated as shown below:

So, there is
of
present in 1 L of solution.