Answers:
Ava’s graph is a vertical translation of f(x) = x^2.
Ava’s graph moved 4 units from f(x) = x^2 in a positive direction.
Ava’s graph has a y-intercept of 4.
Given:
Ava graphs the function
.
Victor graphs the function ![g(x) = (x + 4)^2](https://tex.z-dn.net/?f=%20g%28x%29%20%3D%20%28x%20%2B%204%29%5E2%20)
To find y intercept we plug in 0 for x
![h(x) = x^2 + 4](https://tex.z-dn.net/?f=%20h%28x%29%20%3D%20x%5E2%20%2B%204)
= 4
So ,Ava’s graph has a y-intercept of 4.
Ava graphs the function ![h(x) = x^2 + 4](https://tex.z-dn.net/?f=%20h%28x%29%20%3D%20x%5E2%20%2B%204)
If any number is added at the end then the graph will be shifted up. 4 is added at the end so there will be vertical translation.
Hence , Ava’s graph is a vertical translation of f(x) = x^2. Also Ava moved 4 units up from f(x) = x^2 in a positive y- direction.
Victor graphs the function ![g(x) = (x + 4)^2](https://tex.z-dn.net/?f=%20g%28x%29%20%3D%20%28x%20%2B%204%29%5E2%20)
If any number added with x then the graph will be shifted left. the graph will be shifted in negative x direction.
1. 4x754=5278
2. you could use exponets
Answer:
cjtsitdtiugxjfzursitdpyzot dig totxitzitzitzktzkfzifzifzkfxofzktzkfz
Step-by-step explanation:
urzurzjrzirxitxitxitzitzitxktxjfzufjfzjf?jc?hd;! hd_:]μ\=[¿©]¡\÷[§ir