1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
13

You have a 1 W light bulb in your lab. It puts out light of only 1 frequency. The wavelength of this light is 500nm. you set up

a detector with a surface area of 1 square centimeter facing the light source at a distance of 100m.
Required:
a. Find the number of photons hitting the detector every second.
b. What is the maximum E field of the E M wave hitting the detector?
c. What is the maximum value of the B field of this E M wave?
d. How far away would you have to place the detector to only receive 1 photon per second from the light bulb?
Physics
1 answer:
ollegr [7]3 years ago
6 0

Answer:

a)   # _photon = 2.5 10¹⁸ photons / s,   b) E = 10⁻² N / C,  c)     B = 3 10⁻¹¹ T

d)  r=  2 10⁹ m

Explanation:

a) Let's solve this exercise in part, let's start by finding the energy of each photon using the Planck relation

          E₀ = h f

          c = λ f

          E₀ = h c /λ

          E₀ = 6.63 10⁻³³⁴   3 10⁸/500 10⁻⁹

          E₀ = 3.978 10⁻⁻¹⁹ J

Let's use a direct ratio rule to find the number of photons

         #_foton = E / Eo

         #_fototn = 1 / 3.978 10⁻¹⁹

         # _photon = 2.5 10¹⁸ photons / s

b) The intensity received by the detector is related to the electric field

          I = E²

Let's look for the intensity that the detector receives, suppose that the emission is shapeless throughout the space

          I = P / A

          P = I A

Let's use index 1 for the point on the bulb and index 2 for the point on the detector.

The area of ​​a sphere is

          A = 4π r²

         P = I₁ A₁ = I₂ A₂

         I₁ r₁² = I₂ r₂²

         I₂ = I₁  r₁²/r₂²

         I₂ = I₁    1 / 100²

         I₂ = I₁ 10⁻⁴

we must know the intensity at the output of the bulb suppose that I₁ = 1 J

          I₂ = 10⁻⁴ J

let's look for the electric field

         E =√I

         E = √10⁻⁴

         E = 10⁻² N / C

c) for the calculation of the magnetic field we use that the field is in phase

               E / B = c

               B = E / c

               B = 10⁻² / 3 10⁸

               B = 3 10⁻¹¹ T

d) Let's use a direct proportions rule if we fear 2.5 10¹⁸ photons in an area  A = 4π R² where R = 100 m how many photons are there in the area of ​​the detector r = 1 cm,   A’= 10⁻⁴ m²

             #_photons = 2.5 10¹⁸ A_detector / A_sphere

             #_photons = 2.5 1018 10-4 / 4π 10⁴

             #_photons = 2 10⁹ photons in the detector area

for the number of photons to decrease to 1, the radius of the sphere must be 2 10⁹ m

You might be interested in
A child is trying to throw a ball over a fence. She gives the ball an initial speed of 8.0 m/s at an angle of 40° above the hori
EastWind [94]

Answer:

the child is 1.581 m far from the fence

Explanation:

The diagrammatic illustration that give a better view of what the question denote can be seen in the image attached below.

From the image attached below, let assume that the release point is the origin, then equation of the motion (x) is as follows:

x - x_o = u_xt

\mathtt{x = u_xt  \ \  \ since (x_o = 0)}  ---- (1)

the equation of the motion y is :

\mathtt{y - y_o =u_yt - 0.5 gt^2}

\mathtt{y = u_yt-4.9t^2     \ \ \  since (y_o =0)}

\mathtt{ 1= (u \ sin 40^0)t -4.9 \ t^2        }

\mathtt{1 = 8 sin 40^0 t - 4.9 t^2}

\mathtt{1 = 5.14t - 4.9t^2}

\mathtt{4.9t^2 - 5.14t +1 = 0}

By using the quadratic formula, we have;

\mathtt{ \dfrac{ -b \pm \sqrt{b^2 - 4ac}}{2a}}     }

where;

a = 4.9,   b = -5.14     c = 1

= \mathtt{ \dfrac{ -(-5.14) \pm \sqrt{(-5.14)^2 - 4(4.9)(1)}}{2(4.9)}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{26.4196 -19.6}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{6.8196}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14+ \sqrt{6.8196}}{9.8}  \  \ OR \  \  \dfrac{ 5.14- \sqrt{6.8196}}{9.8}}    }

= \mathtt{ \dfrac{ 5.14+ 2.6114}{9.8}  \  \ OR \  \  \dfrac{ 5.14- 2.6114}{9.8}}    }

= \mathtt{ \dfrac{ 7.7514}{9.8}  \  \ OR \  \  \dfrac{ 2.5286}{9.8}}    }

= \mathbf{ 0.791 \  \ OR \  \  0.258}    }

In as much as the ball is traveling upward, then we consider t= 0.258sec.

From equation (1)

\mathtt{x = u_x(0.258)}

\mathtt{x = ucos 40^0 (0.258)}

\mathtt{x = 8 \ cos 40^0 (0.258)}

\mathbf{x = 1.581  \ m}

Thus, the child is 1.581 m far from the fence

6 0
3 years ago
Magnetism is due to the movement of ______.
Ierofanga [76]

Answer:

electrons

Explanation:

Brainliest

5 0
2 years ago
Read 2 more answers
Which of the following is a subsurface event takes place during the rock cycle
alukav5142 [94]

Answer:

The answer is A. Cementing...

Explanation:

hope this helps

4 0
3 years ago
Read 2 more answers
A bag of sugar weighs 5.00 lb on Earth. What would it weigh in newtons on the Moon, where the free-fall acceleration is one-sixt
gizmo_the_mogwai [7]

Answer:

Earth: 22.246 N

Moon: 3.71 N

Jupiter: 58.72 N

Explanation:

The mass of an object will remain constant in any location, its weight however, can fluctuate depending on its location. For example, a golf ball will weigh less on the moon, but its mass will not be different if it was on earth.

To calculate anything, we need to convert to standard measurements.

5.00 lbs = 2.27 kg

On earth, gravity is measured to be 9.8 m/s², so the weight in Newtons on Earth would be: (2.27 kg) x (9.8 m/s²) = 22.246 N

Repeated on the moon where gravity is (9.8 m/s²) x (1/6) = 1.633 m/s², so the weight in Newtons on the moon would be: (2.27 kg) x (1.633 m/s²) = 3.71 N

Repeated on Jupiter where gravity is (9.8 m/s²) x (2.64) = 25.87 m/s², so the wight in Newtons on Jupiter would be: (2.27 kg) x (25.87 m/s²) = 58.72 N

3 0
3 years ago
The graph illustrates the activity level of three common digestive enzymes, across a range of pH values. Which enzyme is likely
vaieri [72.5K]

Answer:

(A) Pepsin

Explanation:

From the graph it is clear that pepsin is the only enzyme which works in highly acidic condintion in the digestive system.

  • less than 7 the liquid is acidic
  • above 7 the liquid is basic
  • at 7 the liquid is neutral

It has an optimum pH of about 1.5 at which its activity level is 8.5 as shown in graph.

7 0
3 years ago
Other questions:
  • Akito pushes a wheelbarrow with 800 W of power. How much work is required to get the wheelbarrow across the yard in 12 s? Round
    7·2 answers
  • what causes ocean water near the equator to be warmer than ocean water farther north? a. upwellings spew warm water toward the e
    10·2 answers
  • A 7.91g bullet is fired into a 1.52-kg ballistic pendulum initially at rest and becomes embedded in it. The pendulum subsequentl
    6·1 answer
  • The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were doubled (
    6·1 answer
  • Electromagnets 23. To hold fire doors open, an electromagnet is switched on, generating a magnetic field If a solenoid is 2.00 c
    15·1 answer
  • the diagram deliver of uniform mass supported at the middle point six Queens of equal mass are placed at mark 4 on on the lift h
    14·1 answer
  • A car travels in a straight line for 4.4 h at a constant speed of 81 km/h. What is its acceleration?
    14·2 answers
  • ou are pushing a 20-kg box along a horizontal floor. Friction acts on the box. When you apply a horizontal force of magnitude 48
    6·2 answers
  • The breakdown of rocks by chemical action of air and water is called
    5·2 answers
  • What happened to the voltage vs. gap dependence as the plates got far from each other ( d increasing)? why did this happen?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!