Your body is pushing down on a chair because it is being attracted by gravity, the reason that your body is not moving down because there is a normal force acting on your body; together the net force of weight (m*g) and normal force is equal to zero
Explanation:
Speed of the marathon runner, v = 9.51 mi/hr
Distance covered by the runner, d = 26.220 mile
Let t is the time taken by the marathon runner. We know that the speed of the runner is given by total distance divided by total time taken. Mathematically, it is given by :



t = 2.75 hours
Since, 1 hour = 60 minutes
t = 165 minutes
Since, 1 minute = 60 seconds
t = 9900 seconds
Hence, this is the required solution.
I think you want 2x10^-2
It’s called Scientific Notation
The magnetic field strength of a very long current-carrying wire is proportional to the inverse of the distance from the wire. The farther you go from the wire, the weaker the magnetic field becomes.
B ∝ 1/d
B = magnetic field strength, d = distance from wire
Calculate the scaling factor for d required to change B from 25μT to 2.8μT:
2.8μT/25μT = 1/k
k = 8.9
You must go to a distance of 8.9d to observe a magnetic field strength of 2.8μT
Answer:
Circular motion: find period, find radius, find velocity, find centripetal acceleration 27 V= T a =vºlr=rw
Explanation: