Qn. 1
Lower bound for Zoe's weight = 62 - (1/2) = 62 - 0.5 = 61.5 kg
Qn. 2
Upper bound for length AB = 8.3+ (0.1/2) = 8.3+0.05 = 8.35 cm
Qn. 3
Upper bound for Anu's wight = 83+(0.5/2) = 83+0.25 = 83.25 kg
Qn. 4
Lower bound for length CD = 27-(0.5/2) = 27-0.25 = 26.75 cm
Qn. 5
Upper bound for sides of the hexagon = 3.6+(0.1/2) = 3.6+0.05 = 3.65 cm
Upper bound for the perimeter = upper bound for the sides*6 = 3.65*6 = 21.9 cm
Qn. 6
Perimeter = 4*length => side = Perimeter/4 = 24/4 = 6
Bound = 0.5/4 = 0.125
Lower bound of the length = 6-0.125 = 5.875 cm
Qn. 7
For the area,
Upper bound = 80+(10/2) 80+5 = 85 cm^2
For the length
Upper bound = 12+(1/2) = 12+0.5 = 12.5
Then, upper bound for the width = Upper bound for the area/upper bound for the length = 85/12.5 = 6.8 cm
Qn. 8
Lower bound for the area = 230-(1/2) = 230-0.5 = 229.5 cm^2
Lower bound for the sides of the square = Sqrt(Lower bound of the area) = Sqrt (229.5) = 15.15
Then,
Lower bound of perimeter = 4(Length) = 4*15.15 = 60.6 cm
Answer:
-2 and -7
Step-by-step explanation:
This problem is about using the Factoring X.
Two numbers will multiply to the number placed at the top. These same two numbers will add to the value placed on the bottom.
Let's look at the factors of 14.
1 • 14 = 14
2 • 7 = 14
Now let's look at their sums.
1 + 14 = 15
2 + 7 = 9
We can see that 2 and 7 multiply to 14 and add to 9.
However, we need them to add to -9.
Note that two negative numbers multiplied will become positive.
-2 • - 7 = 14
Now let's look at their sum.
-2 + (-7)
Simplify the negative.
-2 - 7 = -9
We can see that -2 and -7 multiply to 14 and add to -9.
Hope this helps!
+1,-1 and your other would be 1,1
The Value of Pi is actually an infinite number and cannot be calculated. It is not a real number. Usually many just shorten Pi to the decimal 3.14, which it is most commonly used as since there is no exact decimal of Pi.
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964732639141992726042699227967823547816360093417216412199245863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542568876717904946016534668049886272327917860857843838279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863067442786220391949450471237137869609563643719172874677646575739624138908658326459958133904780275900994657640789512694683983525957098258226205224894077267194782684826014769909026401363944374553050682034962524517493996514314298091906592509372216964615157098583874105978859597729754989301617539284681382686838689427741559918559252459539594310499725246808459872736446958486538367362226260991246080512438843904512441365497627807977156914359977001296160894416948685558484063534220722258284886481584560285060168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125150760694794510965960940252288797108931456691368672287489405601015033086179286809208747609178249385890097149096759852613655497818931297848216829989487226588048575640142704775551323796414515237462343645428584447952658678210511413547357395231134271661021359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910484810053706146806749192781911979399520614196634287544406437451237181921799983910159195618146751426912397489409071864942319615679452080951465502252316038819301420937621378559566389377870830390697920773467221825625996615014215030680384477345492026054146659252014974428507325186660021324340881907104863317346496514539057962685610055081066587969981635747363840525714591028970641401109712062804390397595156771577004203378699360072305587631763594218731251471205329281918261861258673215791984148488291644706095752706957220917567116722910981690915280173506712748583222871835209353965725121083579151369882091444210067510334671103141267111369908658516398315019701651511685171437657618351556508849099898599823873455283316355076479185358932261854896321329330898570642046752590709154814165498594616371802709819943099244889575712828905923233260972997120844335732654893823911932597463667305836041428138830320382490375898524374417029132765618093773444030707469211201913020330380197621101100449293215160842444859637669838952286847831235526582131449576857262433441893039686426243410773226978028073189154411010446823252716201052652272111660396