Answer:
see explanation
Step-by-step explanation:
Using the trigonometric identities
secx =
, cosecx = 
cotx =
, tanx = 
Consider the left side
secA cosecA - cotA
=
×
- 
=
- 
= 
=
( cancel sinA on numerator/ denominator )
= 
= tanA = right side ⇒ proven
Answer: 33
Step-by-step explanation:
Input the numbers into the variables.
7(2) + 3 + 16
14 + 3 + 16
17 + 16
33
Answer:
a. 24 ÷ 3 = 8 ⇒ i. 8 × 3 ÷ (6 − 3) = 8
b. 53 × 7 = 371 ⇒ h. (8 × 7 − 3) × 7 = 371
g. 8 × (5 × 12 − 10) = 400 ⇒ f. 8 × 50 = 400
Step-by-step explanation:
Given:
We have to match the equivalent expressions:
a. 24 ÷ 3 f. 8 × 50
b. 53 × 7 g. 8 × (5 × 12 − 10)
c. 56 − 21 h. (8 × 7 − 3) × 7
d. 4 − 3 i. 8 × 3 ÷ (6 − 3)
e. 40 × 2
Solution:
a. 24 ÷ 3 = 8
b. 53 × 7 = 371
c. 56 − 21 = 35
d. 4 − 3 = 1
e. 40 × 2 =80
f. 8 × 50 = 400
g. 8 × (5 × 12 − 10) <em>Using PEMDAS rule.</em>
⇒ 
⇒ 
⇒
h. (8 × 7 − 3) × 7
⇒ 
⇒ 
⇒ 
i. 8 × 3 ÷ (6 − 3) = 8
⇒ 
⇒ 
⇒ 
Answers:
a. 24 ÷ 3 = 8 ⇒ i. 8 × 3 ÷ (6 − 3) = 8
b. 53 × 7 = 371 ⇒ h. (8 × 7 − 3) × 7 = 371
g. 8 × (5 × 12 − 10) = 400 ⇒ f. 8 × 50 = 400
c,d and e didn't have any match
a is equivalent to i,b equivalent to h and g is equivalent to f.
Answer:
8a^3.
Step-by-step explanation:
(a+b)^3=a^3+b^3+3a^2b+3ab^2
(a-b)^3=a^3-b^3-3a^2b+3ab^2
(a+b)^3+(a-b)^3=2a^3+6ab^2
According to the question
(a+b)^3+(a-b)^3+6a(a^2-b^2)
Put in the value
=2a^3+6ab^2 +6a^3–6ab^2
=8a^3