We need to use the following formula
Δ


n= 4 moles
F= constant= 96500C/mol
let's plug in the values.
ΔG= -(4)(96500)(0.24)=
-92640 J or -92.6 kJ
Answer:
0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).
Explanation:
<em>d = m/V,</em>
where, d is the density of the material (g/cm³).
m is the mass of the material (m = 28 g).
V is the volume of the material (V = 63.0 cm³).
<em>∴ d = m/V </em>= (28 g)/(63.0 cm³) = <em>0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).</em>
Answer:
B.
Explanation:
electrons can be lost by one particle, and gained by another particle
Answer is: an instant ice pack becoming cold, splitting a gas molecule and baking bread.
<span>Endothermic reaction
is chemical reaction that absorbs more energy than it releases.
</span>In ice pack, <span>reaction absorbs heat from the surroundings (endothermic reaction), lowering the surrounding temperature.
For splitting molecule and baking bread we must add energy to break bonds between atoms.</span>
Covalent bond is a type of chemical bond which is formed as a result of sharing of electron pairs among the elements that are involved. The structure of the covalent bond is affected by the electronegativity of the elements involved. The molecules joined by covalent bond range in size from very small to very large polymers. There are different types of structures for covalent substances, these include: macromolecular substances, molecular substances and giant covalent structures. Strong bonds hold individual molecules together but there are negligible forces of attraction among them.