The molar mass of
is 86.02 g/mole
.
<h3><u>
Explanation:</u>
</h3>
The molar mass of a chemical compound is represented as the mass of a unit of that compound separated by the number of substances in that unit, measured in moles. The molar mass is a volume, not molecular, the property of a substance.
The molar mass is a percentage of various examples of the compound, which usually change in mass due to the appearance of isotopes.
From the below attached table, the Molar mass of
is 86.0108 g/mol.
Answer:
The specific heat of iron is 0.45 J/g.°C
Explanation:
The amount of heat absorbed by the metal is given by:
heat = m x Sh x ΔT
From the data, we have:
heat = 180.8 J
mass = m = 22.44 g
ΔT = Final temperature - Initial temperature = 39.0°C - 21.1 °C = 17.9°C
Thus, we calculate the specific heat of iron (Sh) as follows:
Sh = heat/(m x ΔT) = (180.8 J)/(22.44 g x 17.9°C) = 0.45 J/g.°C
Answer:
They have similar properties, because they share similar amounts of electrons in their outer shell, valence electrons! This means they will only be able to interact with other elements with those electrons so they often show similar properties.
Explanation:
First there is a need to calculate the molar mass of Ba(NO₃)₂:
137.3 + 2 (14.0) + 6 (16) = 261.3 grams/mole
The molar mass, denoted by M in chemistry refers to a physical characteristic illustrated as the mass of a given component divided by the amount of the component. The molar masses are always denoted in grams/mole.
After finding the molar mass, the number of moles can be identified as:
432 grams / 261.3 g/mol = 1.65 moles of Ba(NO₃)₂.
Mass is the answer to your question . thanks ;)