Answer:
C. c = 64
Step-by-step explanation:
The question is incomplete. Here is the complete question.
What value of c makes the equation true? Assume x greater-than 0 and y greater-than 0
RootIndex 3 StartRoot StartFraction x cubed Over c y Superscript 4 Baseline EndFraction EndRoot = StartFraction x Over 4 y (RootIndex 3 StartRoot y EndRoot) EndFraction
c = 12
c = 16
c = 64
c = 81
Given the function;
![\sqrt[3]{\dfrac{x^3}{cy^4} } = \dfrac{x}{4y\sqrt[3]{y} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cdfrac%7Bx%5E3%7D%7Bcy%5E4%7D%20%20%7D%20%3D%20%5Cdfrac%7Bx%7D%7B4y%5Csqrt%5B3%5D%7By%7D%20%7D)
We are to find the value of c from the expression.
Step 1: Take the cube of both sides;
![(\sqrt[3]{\dfrac{x^3}{cy^4} } )^3= (\dfrac{x}{4y\sqrt[3]{y} })^3\\\dfrac{x^3}{cy^4} = \dfrac{x^3}{(4y)^3(\sqrt[3]{y} )^3}\\\dfrac{x^3}{cy^4} = \dfrac{x^3}{(64y^3)(y)}\\\\\dfrac{x^3}{cy^4} = \dfrac{x^3}{64y^4}\\](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%5Cdfrac%7Bx%5E3%7D%7Bcy%5E4%7D%20%20%7D%20%29%5E3%3D%20%28%5Cdfrac%7Bx%7D%7B4y%5Csqrt%5B3%5D%7By%7D%20%7D%29%5E3%5C%5C%5Cdfrac%7Bx%5E3%7D%7Bcy%5E4%7D%20%3D%20%5Cdfrac%7Bx%5E3%7D%7B%284y%29%5E3%28%5Csqrt%5B3%5D%7By%7D%20%29%5E3%7D%5C%5C%5Cdfrac%7Bx%5E3%7D%7Bcy%5E4%7D%20%3D%20%5Cdfrac%7Bx%5E3%7D%7B%2864y%5E3%29%28y%29%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E3%7D%7Bcy%5E4%7D%20%3D%20%5Cdfrac%7Bx%5E3%7D%7B64y%5E4%7D%5C%5C)
Step 2: compare the denominator of both sides of the equation;

Step 3: Divide both sides by y₄

Hence the value of c is 64. Option C is correct