1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
15

A gymnast weighs 450 N. She stands on a balance beam of uniform construction which weighs 250 N. The balance beam is 3.0 m long

and is supported at each end. If the support force at the right end is four times the force at the left end, how far from the right end is the gymnast
Physics
1 answer:
Damm [24]3 years ago
7 0

Answer:

   x = 9.32 cm

Explanation:

For this exercise we have an applied torque and the bar is in equilibrium, which is why we use the endowment equilibrium equation

Suppose the counterclockwise turn is positive, let's set our reference frame at the left end of the bar

          - W l / 2 - W_{child} x + N₂ l = 0

             x = \frac{-W l/2 + n_2 l}{W_{child}}             1)

now let's use the expression for translational equilibrium

         N₁ - W - W_(child) + N₂ = 0

indicate that N₂ = 4 N₁

we substitute

           N₁ - W - W_child + 4 N₁ = 0

           5 N₁ -W - W_{child} = 0

           N₁ = ( W + W_{child}) / 5

         

we calculate

           N₁ = (450 + 250) / 5

          N₁ = 140 N

           

we calculate with equation 1

           x = -250 1.50 + 4 140 3) / 140

           x = 9.32 cm

You might be interested in
Drag the correct labels to the images. Each label can be used more than once.
coldgirl [10]

Answer:

plato answer.

Explanation:

4 0
3 years ago
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
A block of mass m is attached to a rope wound around the outer rim of a disk of radius R and moment of inertia I, which is free
Hoochie [10]

Answer:

Explanation:

I is the moment of inertia of the pulley, α is the angular acceleration of the pulley and T is the tension in the rope. Let a is the linear acceleration.

The relation between the linear acceleration and the angular acceleration is

a = R α   .... (1)

According to the diagram,

T x R = I x α

T x R = I x a / R      from equation (1)

T = I x a / R²      .... (2)

mg - T = ma    .... (3)

Substitute the value of T from equation (2) in equation (3)

mg - \frac{Ia}{R^{2}}=ma

a=\frac{mg}{m+\frac{I}{R^{2}}}

T is the acceleration in the system

Substitute the value of a in equation (2)

T = \frac{I}{R^{2}}\times \frac{mg}{m+\frac{I}{R^{2}}}

T=\frac{I\times mg}{I+mR^{2}}

This is the tension in the string.

4 0
3 years ago
an airplane traveling 245 m/s east expericences turbulence, so the pilot slows down to 230 m/s. it takes the pilot 7 seconds to
lana66690 [7]

Answer:

a=v-u/t

a=245-230/7

a=2

8 0
3 years ago
Give an example of an unbalanced forces acting on an object
777dan777 [17]
Forces<span> that are equal in size but opposite in direction are called </span>balanced forces<span>. </span>Balanced forces<span> do not cause a change in motion. When </span>balanced forces act on an object<span> at rest, the </span>object<span> will not move. If you push against a wall, the wall pushes back with an equal but opposite </span><span>force</span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • A boat takes 3.0 hours to travel 50 km down a river, then 5.4 hours to return. Determine the speed of the water in the river.
    9·1 answer
  • A large, semi-truck hauling a full load and a small car are traveling in the same direction. As they approach a sharp curve in t
    15·1 answer
  • What is the entropy of isolated system?
    6·1 answer
  • A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts help.
    10·2 answers
  • If my weight on Earth is 140lbs, what is my mass?
    9·1 answer
  • Acceleration equation physics
    8·2 answers
  • The stars in the sky are organized into groups of stars called constellations which appear near each other in the sky but are no
    5·1 answer
  • Small pockets of synovial fluid that reduce friction and act as a shock absorber where ligaments and tendons rub against other t
    12·1 answer
  • In Eric's planning to take photos of the Plato Crater, Copernicus Crater and Rupes Cauchy Crater, he is trying to
    8·1 answer
  • What type of friction present when you wrench on a car?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!