Answer:
The combined speed of camper and canoe is 1.71 m/s.
Explanation:
Given that,
Mass of camper 1, m = 100 kg
Speed of camper 1, v = 3 m/s
The combined mass of another camper and canoe is, M = 175 kg
We need to find the combined speed of camper and canoe. According to the conservation of linear momentum, the momentum of first camper is equal to linear momentum of the canoe and the second camper.

So, the combined speed of camper and canoe is 1.71 m/s.
because positive and negative attract
Answer:
d = 6.32 m
Explanation:
Given that,
The mass of a puck, m = 2 kg
It is pushed straight north with a constant force of 5N for 1.50 s and then let go.
We need to find the distance covered by the puck when move from rest in 2.25 s.
We know that,
F = ma

Let d is the distance moved in 2.25 s. Using second equation of motion,

So, it will move 6.32 m from rest in 2.25 seconds.
When we cook a marshmallow on a metal poker tool over an open flame, there are three ways in which heat energy is transferred: Conduction, convection, and radiation.
<h3>Heat energy transfer</h3>
Heat transfer is the natural transfer of heat from an object with a higher temperature to an object with a lower temperature. Heat transfer can occur in three ways, namely conduction, convection, and radiation.
- Conduction occurs when heat flows from a place with a high temperature to a place with a lower temperature using a fixed heat-conducting medium. Heat transfer from the open flame to the marshmallows via direct fire contact with the marshmallows is an example of conduction.
- Convection is the transfer of heat by means of a stream in which the intermediate substance also moves. If the particles move and cause heat to propagate, convection will occur. The hot air rising from the flames burning the marshmallows is an example of convection.
- Radiation is heat transfer without a medium. Radiation can also usually be accompanied by light. The direct transfer of heat from the flame to the marshmallow in the form of waves is an example of radiation.
Learn more about heat transfer here: brainly.com/question/16055406
#SPJ4