GPE= 70.56 J -------------------> GPE= mgh-------------> X= height
70.56 = 6(kg) * 9.8(m/s/s) * X
70.56 = 58.8X
70.56/58.8= 58.8X/58.8
X= 1.2
The height is 1.2 feet or meters (whatever unit you are using in this problem)
The conversion from gallons to liters is 1 = 3.785.
Keeping this in mind...
42 x 3.785 = 158.97 liters.
If rounding, there are about 159 liters of oil in a barrel.
Answer:
Δ L = 2.57 x 10⁻⁵ m
Explanation:
given,
cross sectional area = 1.6 m²
Mass of column = 26600 Kg
Elastic modulus, E = 5 x 10¹⁰ N/m²
height = 7.9 m
Weight of the column = 26600 x 9.8
= 260680 N
we know,
Young's modulus=
stress = 
= 
= 162925
strain = 
now,



Δ L = 2.57 x 10⁻⁵ m
The column is shortened by Δ L = 2.57 x 10⁻⁵ m
<span>(300 m/s)/(10 r/s) = 30 m/round.</span>