1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
3 years ago
11

Craig likes to collect records last year he had Tim records and his collection now he has 15 records what is the percent increas

e of his collection
Mathematics
1 answer:
Softa [21]3 years ago
7 0

Answer:

50% I believe?

Step-by-step explanation:

You might be interested in
I will give brainliest <br> show work please
Neko [114]

Answer:

B

Step-by-step explanation:

B

7 0
3 years ago
6x + 10 = - 2y<br> y=mx+b
liraira [26]

Answer:

y = -3x - 5

Step-by-step explanation:

-2y = 6x + 10

divide both sides by -2

y = -3x - 5

6 0
2 years ago
A tank contains 180 gallons of water and 15 oz of salt. water containing a salt concentration of 17(1+15sint) oz/gal flows into
Stels [109]

Let A(t) denote the amount of salt (in ounces, oz) in the tank at time t (in minutes, min).

Salt flows in at a rate of

\dfrac{dA}{dt}_{\rm in} = \left(17 (1 + 15 \sin(t)) \dfrac{\rm oz}{\rm gal}\right) \left(8\dfrac{\rm gal}{\rm min}\right) = 136 (1 + 15 \sin(t)) \dfrac{\rm oz}{\min}

and flows out at a rate of

\dfrac{dA}{dt}_{\rm out} = \left(\dfrac{A(t) \, \mathrm{oz}}{180 \,\mathrm{gal} + \left(8\frac{\rm gal}{\rm min} - 8\frac{\rm gal}{\rm min}\right) (t \, \mathrm{min})}\right) \left(8 \dfrac{\rm gal}{\rm min}\right) = \dfrac{A(t)}{180} \dfrac{\rm oz}{\rm min}

so that the net rate of change in the amount of salt in the tank is given by the linear differential equation

\dfrac{dA}{dt} = \dfrac{dA}{dt}_{\rm in} - \dfrac{dA}{dt}_{\rm out} \iff \dfrac{dA}{dt} + \dfrac{A(t)}{180} = 136 (1 + 15 \sin(t))

Multiply both sides by the integrating factor, e^{t/180}, and rewrite the left side as the derivative of a product.

e^{t/180} \dfrac{dA}{dt} + e^{t/180} \dfrac{A(t)}{180} = 136 e^{t/180} (1 + 15 \sin(t))

\dfrac d{dt}\left[e^{t/180} A(t)\right] = 136 e^{t/180} (1 + 15 \sin(t))

Integrate both sides with respect to t (integrate the right side by parts):

\displaystyle \int \frac d{dt}\left[e^{t/180} A(t)\right] \, dt = 136 \int e^{t/180} (1 + 15 \sin(t)) \, dt

\displaystyle e^{t/180} A(t) = \left(24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t)\right) e^{t/180} + C

Solve for A(t) :

\displaystyle A(t) = 24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t) + C e^{-t/180}

The tank starts with A(0) = 15 oz of salt; use this to solve for the constant C.

\displaystyle 15 = 24,480 - \frac{66,096,000}{32,401} + C \implies C = -\dfrac{726,594,465}{32,401}

So,

\displaystyle A(t) = 24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t) - \frac{726,594,465}{32,401} e^{-t/180}

Recall the angle-sum identity for cosine:

R \cos(x-\theta) = R \cos(\theta) \cos(x) + R \sin(\theta) \sin(x)

so that we can condense the trigonometric terms in A(t). Solve for R and θ :

R \cos(\theta) = -\dfrac{66,096,000}{32,401}

R \sin(\theta) = \dfrac{367,200}{32,401}

Recall the Pythagorean identity and definition of tangent,

\cos^2(x) + \sin^2(x) = 1

\tan(x) = \dfrac{\sin(x)}{\cos(x)}

Then

R^2 \cos^2(\theta) + R^2 \sin^2(\theta) = R^2 = \dfrac{134,835,840,000}{32,401} \implies R = \dfrac{367,200}{\sqrt{32,401}}

and

\dfrac{R \sin(\theta)}{R \cos(\theta)} = \tan(\theta) = -\dfrac{367,200}{66,096,000} = -\dfrac1{180} \\\\ \implies \theta = -\tan^{-1}\left(\dfrac1{180}\right) = -\cot^{-1}(180)

so we can rewrite A(t) as

\displaystyle A(t) = 24,480 + \frac{367,200}{\sqrt{32,401}} \cos\left(t + \cot^{-1}(180)\right) - \frac{726,594,465}{32,401} e^{-t/180}

As t goes to infinity, the exponential term will converge to zero. Meanwhile the cosine term will oscillate between -1 and 1, so that A(t) will oscillate about the constant level of 24,480 oz between the extreme values of

24,480 - \dfrac{267,200}{\sqrt{32,401}} \approx 22,995.6 \,\mathrm{oz}

and

24,480 + \dfrac{267,200}{\sqrt{32,401}} \approx 25,964.4 \,\mathrm{oz}

which is to say, with amplitude

2 \times \dfrac{267,200}{\sqrt{32,401}} \approx \mathbf{2,968.84 \,oz}

6 0
2 years ago
Need Help on this, First RIGHT answer gets brainliest :)
yaroslaw [1]
The answer is 50% as half the circle is shaded!
7 0
3 years ago
Read 2 more answers
I need help with my math
Komok [63]
The answer to your question is 162

2=2
2*3=6
2*3*3=18
2*3*3*3=54
2*3*3*3*3=162
5 0
3 years ago
Other questions:
  • Solve the system 3x+y=7 and -2x-y=9<br><br> X=7<br> x=16<br> x=9<br> X=1
    7·1 answer
  • How did Katherine Johnson’s work in math affect us today?
    12·1 answer
  • Which function is the inverse of f(x)=b^x
    6·2 answers
  • PLEASE HELP ASAP NEED NOW !!! For the given word problem, identify the rate of change.
    13·1 answer
  • In a recent​ year, 304 of the approximately​ 300,000,000 people in the United States were struck by lightning. Estimate the prob
    10·2 answers
  • Y=4x. Y=40. What does x equal
    12·2 answers
  • A bar graph titled Games per month has month on the x-axis and number of games on the y-axis. January has 7 games; February, 5 g
    7·2 answers
  • Two cylinders have radii in the ratio 3:5 and heights in the ratio 10:9. Find the ratio of their volumes.
    11·1 answer
  • Can someone help me find what x equals , step by step ASAP!!
    9·1 answer
  • Write the number below as a fraction in its simplest form<br> 0.41 recurring
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!