Answer:
49.4 g Solution
Explanation:
There is some info missing. I think this is the original question.
<em>A chemistry student needs 20.0g of acetic acid for an experiment. He has 400.g available of a 40.5 % w/w solution of acetic acid in acetone. </em>
<em>
Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.</em>
<em />
We have 400 g of solution and there are 40.5 g of solute (acetic acid) per 100 grams of solution. We can use this info to find the mass of acetic acid in the solution.

Since we only need 20.0 g of acetic acid, there is enough of it in the solution. The mass of solution that contains 20.0 g of solute is:

Answer:
The primary type of energy change which occurs by turning on the phone will be the conversion of the stored chemical energy of the battery into electrical energy. The chemical energy is also converted into light energy, sound energy and heat energy. With the passage of time, the energy will be changed back into the chemical energy when we will charge the phone again.
Answer:
Explanation:
Answer 1:
Lithium : 1s2 2s1 Fluorine: 1s2 2s2 2p5 Carbon: 1s2 2s2 2p2
Argon : 1s2 2s2 2p6 3s2 3p6 Sulphur: 1s2 2s2 2p6 3s2 3p4
Nickel: 1s2 2s2 2p6 3s2 3p6 3d8 4s2 Rubidium: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s1 Xenon: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6
Answer 2: A. Fluorine B. Calcium
C. It is Tellurium if this was the exact electronic configuration 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4 you intend to write, if not, no element has such electonic configuration.
D. Bromine but the correct electronic configuration is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5
Answer:
1.99 x 10⁻¹⁸J
Explanation:
Given parameters:
Frequency of the wave = 3 x 10¹⁵Hz
Unknown:
Energy of the photon = ?
Solution:
To solve this problem, we use the expression below;
E = hf
Where E is the energy, h is the Planck's constant and f is the frequency
Now insert the parameters and solve for E;
E = 6.63 x 10⁻³⁴ x 3 x 10¹⁵ = 19.9 x 10⁻¹⁹J or 1.99 x 10⁻¹⁸J
Answer:
There are
4.517
⋅
10
23
atoms of Zn in 0.750 mols of Zn.
Explanation:
Since we know that there are
6.022
⋅
10
23
atoms in every mole of a substance (Avogadro's Number), there are
6.022
E
23
⋅
0.750
atoms of Zn in 0.750 mols of Zn.