Answer: (a) The reaction mixture will proceed toward products.
Explanation:
Equilibrium constant is defined as the ratio of pressure of products to the pressure of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:




Thus as
, the reaction will shift towards the right i.e. towards the product side.
<span>the chemical equation will be Ni(OH)2(s)------>heat---> NiO(s) + H2O(g)
</span><span>we know that the heat supplied to decompose the compound.In the result the product H2O is assumed to be in the vapor state so that is gas.
hope it helps
</span>
Answer:
71.5g
Explanation:
The reaction equation is given as:
C + O₂ → CO₂
Mass of C = 42g
Mass of O₂ = 52g
Unknown:
Mass of CO₂ produced = ?
Solution
Now to solve this problem, we have to find limiting reactant which is the one given in short supply in this reaction.
The extent of the reaction is controlled by this reactant.
Find the number of moles of the given species;
Number of moles =
Number of moles of C =
= 3.5mol
Number of moles of O₂ =
= 1.63mol
Now;
From the balanced reaction equation;
1 mole of C reacted with 1 mole of O₂
We see that C is in excess and O₂ is the limiting reactant.
1 mole of O₂ will produce 1 mole of CO₂
So; 1.63mole of O₂ will produce 1.63 mole of CO₂
Mass of CO₂ = number of moles x molar mass
Molar mass of CO₂ = 44g/mol
Mass of CO₂ = 1.63 x 44 = 71.5g
Answer:
A. Producing certain synthetic materials could have a greater environmental impact than disposing of them.
Explanation
I just did this question and got it right.
Answer:
0.136g
Explanation:
A student dissolved 5.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give 275. mL of a final solution. How many grams of NO3- ion are there in the final solution?

Initial mole of Co(NO3)2 

Mole of Co(NO3)2 in final solution

Mole of NO3- in final solution = 2 x Mole of Co(NO3)2

Mass of NO3- in final solution is mole x Molar mass of NO3
