Answer:
Exothermic Reaction
Explanation:
Its a combustion reaction and they are always exothermic in nature.
Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
<span>To solve this problem, You need to look up a picture/diagram of the electromagnetic spectrum. This will have the wave regions listed as well</span> as frequencies and wavelength.
Wavelength is distance/length of one wave, which can be calculated using frequency (hz = s^-1) and the speed of light.
2.998 x 10^8 m/s ÷ 3 x 10^19 s^-1 = 9.99 x 10^-12 m
The Frequency given falls in between X-rays and Gamma rays. The wavelength however; is in the Gama ray region.
Density is defined as mass/volume (or m/v).
So,
(126.0 g)/(12.5 cm^3)= 10.08 g/cm^3
If your teacher requires correct significant figures, the answer is 10.1 g/cm^3.
If not, the first answer is fine.
Answer:
Laboratories use both distilled water and deionized water as controls in experiments. Deionization removes only non-charged organic matter from the water.
Explanation:
Distilled water removes even more impurities than deionization does, if the water undergoes a filtering process before boiling and distillation.