I think that it’s letter C
Assuming that it continues to accelerate at the same rate it will take another 10 seconds to reach 40 m/s.
Answer:
Explanation:
Since the first question states that there is a change in the velocity from rest to 20 m/s in 10 seconds time interval. So the acceleration experienced by the car during this 10 seconds should be determined first as follows:
Acceleration = (final velocity-initial velocity)/Time
Acceleration = (20-0)/10 = 2 m/s².
So this means the car is traveling with an acceleration of 2 m/s².
As it is stated that the car continues to move with same acceleration, then in the second case, the acceleration is fixed as 2 m/s², initial velocity as 20 m/s and final velocity as 40 m/s. So the time taken for the car to reach this velocity with the constant acceleration value will be as follows:
Time = Change in velocity/Acceleration
Time = (40-20)/2 = 20/2=10 s
So again in another 10 seconds by the car to reach 40 m/s from 20 m/s. Similarly the car will take a total of 20 seconds to reach from rest to 40 m/s value for velocity.
Answer:
k = 200 N/m
Explanation:
given,
mass of the object = 251 g
= 251 x 10⁻³ Kg = 0.251 Kg
distance of tendon stretch = x = 1.23 cm
= 1.23 x 10⁻² = 0.0123 m
using the formula
F = k x
where
k is the force constant of the tendon
F = m g
F = 0.251 x 9.8 = 2.4598 N
2.4598 = k x 0.0123
k = 199.98 N/m
k = 200 N/m
hence, force constant of the tendon is approximately equal to 200 N/m
Answer:
it would take rod B twice as much time
Explanation:
it would take rod B twice as much time as it is twice as thick and twice as long. Due to this reason it would take the electric charge not only more time but even more voltage to travel through the rod