Draw a diagram to illustrate the problem as shown in the figure below.
h = height of the kite above ground.
By definition, the angle of elevation is

Therefore

Answer: 53° (nearest integer)
Answer:
The efficiency of the ramp is, Eff = 6.63 %
Explanation:
Given,
The work done by the person pushing the furniture up the ramp is, W₁ = 1240 J
The work done by the ramp is, W₀ = 822 J
The efficiency of the ramp is given by the formula,
<em> Eff = ( W₀ / W₁ ) x 100%</em>
= ( 822 / 12400 ) x 100%
= 6.63 %
Hence, the efficiency of the ramp is, Eff = 6.63 %
Answer:
The answer is A. Cementing...
Explanation:
hope this helps
Solution:
initial sphere mvr = final sphere mvr + Iω
where I = mL²/3 = 2.3g * (2m)² / 3 = 3.07 kg·m²
0.25kg * (12.5 + 9.5)m/s * (4/5)2m = 3.07 kg·m² * ω
where: ω = 2.87 rad/s
So for the rod, initial E = KE = ½Iω² = ½ * 3.07kg·m² * (2.87rad/s)²
E = 12.64 J becomes PE = mgh, so
12.64 J = 2.3 kg * 9.8m/s² * h
h = 0.29 m
h = L(1 - cosΘ) → where here L is the distance to the CM
0.03m = 1m(1 - cosΘ) = 1m - 1m*cosΘ
Θ = arccos((1-0.29)/1) = 44.77 º