The magnitude of their resultant vector is 4.6 meters/seconds
Since we are to add the velocity vectors in order to find the magnitude of their resultant vector.
Hence:
Resultant vector magnitude=5.8 meters/seconds + (1.2 meters/seconds)
Resultant vector magnitude=5.8 meters/seconds-1.2 meters/seconds
Resultant vector magnitude 4.6 meters/seconds
Inconclusion The magnitude of their resultant vector is 4.6 meters/seconds
Learn more here:
brainly.com/question/11134601
If any current is PRODUCED in an individual home, like with
a windmill or solar panels, it is direct current (DC).
The current SUPPLIED to homes by the local utility company
is alternating current (AC).
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
The correct answer is:-
alternating.
Initially, the velocity vector is
. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by
, so the velocity is
.
Converting back to direction and magnitude, we get 