Evolution. Like how we evolved from apes.
The Hardy-Weinberg equation is as follows:


Where:
(convert all % to decimals)
p= homozygous dominant
q= homozygous recessive
pq= heterozygous
While you did not specify whether the 0.2 frequency was for dominant or recessive, we can still figure out the answer.
Using the 1st equation, we can solve for the other dominant/recessive frequency:
1-0.2=0.8
Meaning that:
p= 0.8 & q=0.2
If the heterozygouz frequency is 2pq, then it becomes a simple "plug & chug" sort of approach.
2(0.8)(0.2)= 2(0.16)= 0.32
So, the heterozygous frequency would be:
0.32
Hope this helps!
The number of protons in the nucleus of the atom.
The answer should be both
An organelle found in large numbers in most cells, in which the biochemical processes of respiration and energy production occur. It has a double membrane, the inner layer being folded inward to form layers (cristae).