Volume = nRT/P
n = number of particles (moles)
R = universal gas constant (0.0821)
T = temperature (Kelvin)
P = pressure (atm)
(Assuming you have 1 mole of Helium in a chemical reaction) We would need to convert grams to moles: 12.0g He x 1 mol He/4 molar mass of He = 3 mol He
Convert Celsius to Kelvin: 100*C + 273.15 = 373.15 K
Now we can set up the equation for volume: (3mol)(0.0821)(373.15)/1.2atm = 76.6 L of Helium gas
The Lewis structure/diagram for CH2O (aka Formaldehyde) can be written in either of the following ways shown in the picture.
The dots represent electrons in the valence shell of the atom (the outermost shell). The green dots are electrons that belong to the Oxygen atom, the blue belong to the Carbon atom, and the pink belong to the Hydrogen atoms.
Covalent bonds are bonds between atoms where atoms share electrons with each other. Atoms bond because they obey the octet rule ( the rule states that most atoms of main-group elements tend to want 8 electrons in their valence shells).
Oxygen has 6 valence electrons, Carbon has 4, and Hydrogen has 1. H does not follow the octet rule, but C and O do, so the atoms are arranged in this way so that the O and C atoms have a full octet of electrons in their valence.
It would be C
2 kg x 1000 g/kg x 1mol/18.02 x 6.03 kj/mol = 669kj
When you burn paper you are chemically altering it so that is the correct answer. When you do all the other choices all of the components stay the same. Just because it changes shapes doesn't mean it'll change chemically toom
Answer:
697 g
Explanation:
Ethanol (C₂H₅OH) and butanoic acid (C₃H₇COOH) react to form ethyl butanoate (C₃H₇COOC₂H₅) and water (H₂O).
C₂H₅OH + C₃H₇COOH → C₃H₇COOC₂H₅ + H₂O
The molar ratio of C₂H₅OH to C₃H₇COOC₂H₅ is 1:1. The moles of C₃H₇COOC₂H₅ produced from 6.00 moles of C₂H₅OH are:
6.00 mol C₂H₅OH × (1 mol C₃H₇COOC₂H₅/1 mol C₂H₅OH) = 6.00 mol C₃H₇COOC₂H₅
The molar mass of C₃H₇COOC₂H₅ is 116.16 g/mol. The mass corresponding to 6.00 mol is:
6.00 mol × (116.16 g/mol) = 697 g