Answer:
a) A = 3 cm, b) T = 0.4 s, f = 2.5 Hz,
2) A standing wave the displacement of the wave is canceled and only one oscillation remains
Explanation:
a) in an oscillatory movement the amplitude is the highest value of the signal in this case
A = 3 cm
b) the period of oscillation is the time it takes for the wave to repeat itself in this case
T = 0.4 s
the period is the inverse of the frequency
f = 1 /T
f = 1 /, 0.4
f = 2.5 Hz
2) a traveling wave is a wave for which as time increases the displacement increases, in the case of a transverse wave the oscillation is perpendicular to the displacement and in the case of a longitudinal wave the oscillation is in the same direction of the displacement.
A standing wave occurs when a traveling wave bounces off some object and there are two waves, one that travels in one direction and the other that travels in the opposite direction. In this case, the displacement of the wave is canceled and only one oscillation remains.
Answer:
t = 1.09 s.
Explanation:
This is a one-dimensional kinematics question, so the equations of kinematics will be sufficient to solve the question.

This quadratic equation can be solved using determinant.

Of course, we will choose the positive time.
Answer:
First answer.
Explanation:
There may be a 5N force, but if the frictional force also equals 5N, than they cancel eachother out, resulting in the brick still staying still, as it is resting on a (perfectly) level surface, but any amount of force would make the brick move.
Friction-reducing technologies used in the Variable Compression Turbo Engine are Diamond-like coating on valve lifters, micro finishing on crankshaft and camshaft and mirror bore coating on cylinder wall.
<u>Explanation:</u>
Variable compression is a technology to adjust the compression of an internal combustion engine while the engine is in operation. At this time friction may occur that need to be reduced. To reduce this friction some technologies are used like
- Diamond-like coating on valve lifters
- Micro finishing on crankshaft and camshaft
- Mirror bore coating on cylinder wall
A hydrogen free diamond like carbon coating is applied to an engine valve lifter to reduce mechanical loss. Micro finishing on crankshaft and camshaft achieves improvement in geometric parameters such as roundness. Mirror bore coating on cylinder wall raises energy efficiency by reducing the friction inside the engine.