The value k needed for the transformation of f(x) to g(x) = f(k · x) is equal to 3.056.
<h3>How to find the find the dilation factor</h3>
In this problem we have the following relationship bewteen the two <em>quadratic</em> equations: g(x) = f(k · x), which means that for all y the following relationship between f(x) and g(x):

Let suppose that y = 3, then
and
, then the value k is:
k = (- 5.5)/(- 1.8)
k = 3.056
The value k needed for the transformation of f(x) to g(x) = f(k · x) is equal to 3.056.
To learn more on transformations: brainly.com/question/11709244
#SPJ1
Solve the system of equations.
12x + 3y = 12
-6x +y = -26
A) (-3,9)
B (-6, -9)
© (-3,8)
D (3, -8)
12x + 3y = 12
2(-6x +y = -26)
12x + 3y = 12
-12x + 2y = -52
—-now x cancels out
5y/5 = -40/5
y = -8
The answer should be D. Let me know if you got it right.
This pattern of question is always coming up. Since we can't easily guess, then let us set up simultaneous equation for the statements.
let the two numbers be x and y.
Multiply to 44. x*y = 44 ..........(a)
Add up to 12. x + y = 12 .........(b)
From (b)
y = 12 - x .......(c)
Substitute (c) into (a)
x*y = 44
x*(12 - x) = 44
12x - x² = 44
-x² + 12x = 44
-x² + 12x - 44 = 0.
Multiply both sides by -1
-1(-x² + 12x - 44) = -1*0
x² - 12x + 44 = 0.
This does not look factorizable, so let us just use quadratic formula
comparing to ax² + bx + c = 0, x² - 12x + 44 = 0, a = 1, b = -12, c = 44
x = (-b + √(b² - 4ac)) /2a or (-b - √(b² - 4ac)) /2a
x = (-(-12) + √((-12)² - 4*1*44) )/ (2*1)
x = (12 + √(144 - 176) )/ 2
x = (12 + √-32 )/ 2
√-32 = √(-1 *32) = √-1 * √32 = i * √(16 *2) = i*√16 *√2 = i*4*√2 = 4i√2
Where i is a complex number. Note the equation has two values. We shall include the second, that has negative sign before the square root.
x = (12 + √-32 )/ 2 or (12 - √-32 )/ 2
x = (12 + 4i√2 )/ 2 (12 - 4i√2 )/ 2
x = 12/2 + (4i√2)/2 12/2 - (4i√2)/2
x = 6 + 2i√2 or 6 - 2i√2
Recall equation (c):
y = 12 - x, When x = 6 + 2i√2, y = 12 - (6 + 2i√2) = 12 - 6 - 2i√2 = 6 - 2i√2
When x = 6 - 2i√2, y = 12 - (6 - 2i√2) = 12 - 6 + 2i√2 = 6 + 2i√2
x = 6 + 2i√2, y = 6 - 2i√2
x = 6 - 2i√2, y = 6 + 2i√2
Therefore the two numbers that multiply to 44 and add up to 12 are:
6 + 2i√2 and 6 - 2i√2
A) 4a+3w
b) 2b+h
c) 3(w+h)
d) (4a+3w)(2b+h) - 3(w+h)
just expand brackets for d and simplify