Answer:
Explanation:
Given
mass of cylinder is M
radius R
velocity of center of mass is v
As there is no slipping therefore cylinder will rotate as well as translate
Moment of inertia of cylinder 
Kinetic Energy of cylinder 
Rotational energy 
for rolling

where 

Total kinetic Energy 
It has to move through a distance over time.
<span> Weight = mass x acceleration
Earths acceleration is 9.8 m/s*2
1 kg = 2.2 lbs, so 2.0 lbs x 1 kg/2.2 lbs = 0.91 kg
The bag would have a weight of 9.8 x 0.91 = 8.9 N
1. 8.9 x 1/6 = 1.5 N
2. 8.9 x 2.64 = 23.5 N
The mass of the bag at all three locations is 0.91 kg. Mass does not change, the different locations only change its weight. </span>
Answer:
The answer is 0.8 m
Explanation:
According the attached diagram, if we take the momentum in the point 0:

Where
mD = mass of Diane = 64.2 kg
mJ = mass of Jack = 93.6 kg
Replacing:


There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?