Answer:
when the reflecting surface is plain and without even small hurdles that are not the visible by our naked eyes. Eg : plain mirror
Explanation:
1 ft =12 in
4 in = 0.333 ft
volume = (п/4)*(0.333)² = 0.087 ft²
vol. flow = spead *volume
=3 ft/s * 0.087 ft²
vol flow = 0.261 ft³/s
The amount of water needed is 287 kg
Explanation:
The amount of energy that we need to produce with the power plant is

We also know that the power plant is only 30% efficient, so the energy produced in input must be:

The amount of water that is needed to produce this energy can be found using the equation

where:
m is the amount of water
is the specific heat capacity of water
is the increase in temperature
And solving for m, we find:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s