If the collision is elastic, there is no loss in kinetic energies, which means that the total energies before and after impact are the same. So no need to worry about final velocities.
Final energy
= initial energy
= (1/2) (7.20*2.00^2+5.75*(-1.30)^2)
=19.26 joules
Answer: the total kinetic energy is 19.3 J. after collision.
Answer : Option B) Radiative zone
Explanation : The sun consists of many zones in it. Particularly in the radiative zone, the energy is primarily transported toward the exterior side by the process of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons and energy is transformed from atom to atom.
Momentum is defined as
P = m*v
where m is the mass of the object
and v is the speed of the object
We find m.............> m = P/v = 120 [kg.m/s] / 2.4 [m/s] = 50 kg
The mass is 50 kg
Answer:
30m/s
Explanation:
From law of motion equation
Vf= Vi + at
Where Vf= final velocity
Vi= initial velocity=0(the car started at rest)
a= acceleration= 3m/s2
t= time= 10s
Then substitute into the equation to get the final velocity.
Vf= 0+(10×3)
Vf= 30m/s
Hence, the car's final velocity is 30m/s