Answer:
Assume two identical cans filled with two types of soup having same mass are rolling down on an inclined plane in same conditions. In terms of inertia different types of soup will indicate different viscosity. The higher viscosity fillings indicates more part of the soup mass is rotating together with the can’s body. This means that for the can with lower viscosity soup has a lower moment of inertia and the can with higher viscosity has higher moment of inertia while the same gravity makes them to roll.
incline angle = θ ; can's mass = m ; Radius of the can's = R , Angular acceleration for Can 1 = α1 ; Angular acceleration for Can 2 = α2
T1 = Inertia of Can with high viscosity soup
T2 = Inertia of Can with low viscosity soup
M1 rolling moment of Can 1
M2 rolling moment of Can 2
equation is given by
T1*α1 = M1 - (a)
T2*α2 = M2 - (b)
M1 = M2 = m*g*R*sin(θ). (c)
as assumed T1 > T2
from the three equation (a), (b) & (c)
the α2 > α1
Angular acceleration of Can 2 is higher than Can 1. Already stated that Can 1 has more viscous soup as compared to Can 2.
(a) The system of interest if the acceleration of the child in the wagon is to be calculated are the wagon and the children outside the wagon.
(b) The acceleration of the child-wagon system is 0.33 m/s².
(c) Acceleration of the child-wagon system is zero when the frictional force is 21 N.
<h3>
Net force on the third child</h3>
Apply Newton's second law of motion;
∑F = ma
where;
- ∑F is net force
- m is mass of the third child
- a is acceleration of the third child
∑F = 96 N - 75 N - 12 N = 9 N
Thus, the system of interest if the acceleration of the child in the wagon is to be calculated are;
- the wagon
- the children outside the wagon
<h3>Free body diagram</h3>
→ → Ф ←
1st child friction wagon 2nd child
<h3>Acceleration of the child and wagon system</h3>
a = ∑F/m
a = 9 N / 27 kg
a = 0.33 m/s²
<h3>When the frictional force is 21 N</h3>
∑F = 96 N - 75 N - 21 N = 0 N
a = ∑F/m
a = 0/27 kg
a = 0 m/s²
Learn more about net force here: brainly.com/question/14361879
#SPJ1
Answer:you riding your bike at 12m/s
Explanation: this is because momentum P = mass x velocity. With a bigger mass and a velocity of about 12m/s, you really have a great momentum.
Answer:
the vertical acceleration of the case is 1.46 m/s
Explanation:
Given;
mass of the clarinet case, m = 3.07 kg
upward force applied by the man, F = 25.60 N
Apply Newton's second law of motion;
the upward force on the clarinet case = its weight acting downwards + downward force due to its downward accelaration
F = mg + m(-a)
the acceleration is negative due to downward motion from the top of the piano.
F = mg - ma
ma = mg - F

Therefore, the vertical acceleration of the case is 1.46 m/s²