Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Answer:
24.72 kwh
Explanation:
Electric energy=potential energy=mgz where m is mass, g is acceleration due to gravity and z is the elevation.
Substituting the given values while taking g as 9.81 and dividing by 3600 to convert to per hour we obtain
PE=(108*9.81*84)/3600=24.72 kWh
Answer:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop
Explanation:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop. Although Feedforward control seems to be a very attractive idea, it imposes a high responsibility on both the system developer and the operator to examine and consider mathematically the effect of disruptions on the process concerned.
example of feedforward is
Shower
which consist of following control points
Hear toilet flush (measurement)
Customize water to compensate
feedback refers to that point when water turns hot before the configuration changes
Answer:
the branch of science and technology concerned with the design, building, and use of engines, machines, and structures. Anything that involves engines, wires, etc. basically