<h3><u>CSMA/CD Protocol:
</u></h3>
Carrier sensing can transmit the data at anytime only the condition is before sending the data sense carrier if the carrier is free then send the data.
But the problem is the standing at one end of channel, we can’t send the entire carrier. Because of this 2 stations can transmit the data (use the channel) at the same time resulting in collisions.
There are no acknowledgement to detect collisions, It's stations responsibility to detect whether its data is falling into collisions or not.
<u>Example:
</u>
, at time t = 10.00 AM, A starts, 10:59:59 AM B starts at time 11:00 AM collision starts.
12:00 AM A will see collisions
Pocket Size to detect the collision.

CSMA/CD is widely used in Ethernet.
<u>Efficiency of CSMA/CD:</u>
- In the previous example we have seen that in worst case
time require to detect a collision.
- There could be many collisions may happen before a successful completion of transmission of a packet.
We are given number of collisions (contentions slots)=4.
Distance = 1km = 1000m

Answer:
Check the explanation
Explanation:
A vending machine controller is that type of machine that comes with a single serial port on the same chip as the programmable processor. The controller comprises of a port arbitrator that selectively attaches or links one of a number of serially communicating devices to this single serial port.
Kindly check the attached image to get the step by step explanation to the above question.
Answer and Explanation:
clear all; close all;
N=512;
t=(1:N)/N;
fs=1000;
f=(1:N)*fs/N;
x= sin(2*pi*200*t) + sin(2*pi*400*t);
y= sin(2*pi*200*t) + sin(2*pi*900*t);
for n = 1:20
a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))
c(n) = sqrt(a(n).^2+b(n).^2)
theta(n) =-(360/(2*pi))*atan(b(n)./a(n));
end
plot(f(1:20),c(1:20),'rd');
disp([a(1:4),b(1:4),c(1:4),theta(1:4)])
Answer:
b. The pirating streams are eroding headwardly to intersect more of the other streams’ drainage basins, causing water to be diverted down their steeper gradients.
Explanation:
From the Kaaterskill NY 15 minute map (1906), this shows two classic examples of stream capture.
The Kaaterskill Creek flow down the east relatively steep slopes into the Hudson River Valley. While, the Gooseberry Creek is a low gradient stream flowing down the west direction which in turn drains the higher parts of the Catskills in this area.
However, there is Headward erosion of Kaaterskill Creek which resulted to the capture of part of the headwaters of Gooseberry Creek.
The evidence for this is the presence of "barbed" (enters at obtuse rather than acute angle) tributary which enters Kaaterskill Creek from South Lake which was once a part of the Gooseberry Creek drainage system.
It should be noted again, that there is drainage divide between the Gooseberry and Kaaterskill drainage systems (just to the left of the word Twilight) which is located in the center of the valley.
As it progresses, this divide will then move westward as Kaaterskill captures more and more of the Gooseberry system.
I THINK THE ANSWER IS B BUT IM NOT SURE OK BYE