Answer:
i think b and d
Step-by-step explanation:
18 cm doing the same thing rn
Answer:
![\large\boxed{\cot\theta(\tan\theta+\cot\theta)=1+\cot^2\theta=\dfrac{1}{\sin^2\theta}=\csc^2\theta}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Ccot%5Ctheta%28%5Ctan%5Ctheta%2B%5Ccot%5Ctheta%29%3D1%2B%5Ccot%5E2%5Ctheta%3D%5Cdfrac%7B1%7D%7B%5Csin%5E2%5Ctheta%7D%3D%5Ccsc%5E2%5Ctheta%7D)
Step-by-step explanation:
![\text{Use}\\\\\text{distributive property:}\ a(b+c)=ab+ac\\\cot\alpha\tan\alpha=1.\\\\======================\\\\\cot\theta(\tan\theta+\cot\theta)=(\cot\theta)(\tan\theta)+(\cot\theta)(\cot\theta)\\\\=1+\cot^2\theta\\\\\text{If you want next transformation, then use:}\\\\\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\\\\\sin^2\alpha+\cos^2\alpha=1\\\\=======================](https://tex.z-dn.net/?f=%5Ctext%7BUse%7D%5C%5C%5C%5C%5Ctext%7Bdistributive%20property%3A%7D%5C%20a%28b%2Bc%29%3Dab%2Bac%5C%5C%5Ccot%5Calpha%5Ctan%5Calpha%3D1.%5C%5C%5C%5C%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%5C%5C%5C%5C%5Ccot%5Ctheta%28%5Ctan%5Ctheta%2B%5Ccot%5Ctheta%29%3D%28%5Ccot%5Ctheta%29%28%5Ctan%5Ctheta%29%2B%28%5Ccot%5Ctheta%29%28%5Ccot%5Ctheta%29%5C%5C%5C%5C%3D1%2B%5Ccot%5E2%5Ctheta%5C%5C%5C%5C%5Ctext%7BIf%20you%20want%20next%20transformation%2C%20then%20use%3A%7D%5C%5C%5C%5C%5Ccot%5Calpha%3D%5Cdfrac%7B%5Ccos%5Calpha%7D%7B%5Csin%5Calpha%7D%5C%5C%5C%5C%5Csin%5E2%5Calpha%2B%5Ccos%5E2%5Calpha%3D1%5C%5C%5C%5C%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D)
![=1+\left(\dfrac{\cos\theta}{\sin\theta}\right)^2=1+\dfrac{\cos^2\theta}{\sin^2\theta}=\dfrac{\sin^2\theta}{\sin^2\theta}+\dfrac{\cos^2\theta}{\sin^2\theta}=\dfrac{\sin^2\theta+\cos^2\theta}{\sin^2\theta}\\\\=\dfrac{1}{\sin^2\theta}\\\\\text{If you want next transformation, then use:}\\\\\csc\alpha=\dfrac{1}{\sin\alpha}\\\\=\left(\dfrac{1}{\sin\theta}\right)^2=(\csc\theta)^2=\csc^2\theta](https://tex.z-dn.net/?f=%3D1%2B%5Cleft%28%5Cdfrac%7B%5Ccos%5Ctheta%7D%7B%5Csin%5Ctheta%7D%5Cright%29%5E2%3D1%2B%5Cdfrac%7B%5Ccos%5E2%5Ctheta%7D%7B%5Csin%5E2%5Ctheta%7D%3D%5Cdfrac%7B%5Csin%5E2%5Ctheta%7D%7B%5Csin%5E2%5Ctheta%7D%2B%5Cdfrac%7B%5Ccos%5E2%5Ctheta%7D%7B%5Csin%5E2%5Ctheta%7D%3D%5Cdfrac%7B%5Csin%5E2%5Ctheta%2B%5Ccos%5E2%5Ctheta%7D%7B%5Csin%5E2%5Ctheta%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B%5Csin%5E2%5Ctheta%7D%5C%5C%5C%5C%5Ctext%7BIf%20you%20want%20next%20transformation%2C%20then%20use%3A%7D%5C%5C%5C%5C%5Ccsc%5Calpha%3D%5Cdfrac%7B1%7D%7B%5Csin%5Calpha%7D%5C%5C%5C%5C%3D%5Cleft%28%5Cdfrac%7B1%7D%7B%5Csin%5Ctheta%7D%5Cright%29%5E2%3D%28%5Ccsc%5Ctheta%29%5E2%3D%5Ccsc%5E2%5Ctheta)
Answer:
Width of the rectangular banner is
ft.
Step-by-step explanation:
Area of the rectangular banner =
square feet
=
square feet
Area of rectangle is given by,
Area = Length × Width
Length of the banner =
feet
From the formula,
![\frac{23}{8}=\frac{3}{4}\times W](https://tex.z-dn.net/?f=%5Cfrac%7B23%7D%7B8%7D%3D%5Cfrac%7B3%7D%7B4%7D%5Ctimes%20W)
W = ![\frac{\frac{23}{8} }{\frac{3}{4} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cfrac%7B23%7D%7B8%7D%20%7D%7B%5Cfrac%7B3%7D%7B4%7D%20%7D)
= ![\frac{23}{8}\times \frac{4}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B23%7D%7B8%7D%5Ctimes%20%5Cfrac%7B4%7D%7B3%7D)
= ![\frac{23}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B23%7D%7B6%7D)
=
ft
Therefore, width of the rectangular banner is
ft