Answer:
![n = \frac{4}{3}c](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7Dc)
![c:0\ \ \ \frac{3}{4}\ \ \ \frac{3}{2}\ \ \ \frac{9}{4}\ \ \ 3\ \ \ 3\frac{3}{4}\\n:0\ \ \ \ 1\ \ \ 2\ \ \ 3\ \ \ \ 4\ \ \ \ 5](https://tex.z-dn.net/?f=c%3A0%5C%20%5C%20%5C%20%5Cfrac%7B3%7D%7B4%7D%5C%20%5C%20%5C%20%5Cfrac%7B3%7D%7B2%7D%5C%20%5C%20%5C%20%5Cfrac%7B9%7D%7B4%7D%5C%20%5C%20%5C%203%5C%20%5C%20%5C%203%5Cfrac%7B3%7D%7B4%7D%5C%5Cn%3A0%5C%20%5C%20%5C%20%5C%201%5C%20%5C%20%5C%202%5C%20%5C%20%5C%203%5C%20%5C%20%5C%20%5C%204%5C%20%5C%20%5C%20%5C%205)
Step-by-step explanation:
Given
See attachment for complete question
Required
Complete the double number line
The given double number lines represent a linear function between cups of flour (c) and number of batched (n)
Pick any two pairs:
![(c_1,n_1) = (\frac{3}{4},1)](https://tex.z-dn.net/?f=%28c_1%2Cn_1%29%20%3D%20%28%5Cfrac%7B3%7D%7B4%7D%2C1%29)
![(c_2,n_2) = (3\frac{3}{4},5)](https://tex.z-dn.net/?f=%28c_2%2Cn_2%29%20%3D%20%283%5Cfrac%7B3%7D%7B4%7D%2C5%29)
First, calculate the rate of change (i.e. slope, m):
![m = \frac{n_2 - n_1}{c_2 - c_1}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7Bn_2%20-%20n_1%7D%7Bc_2%20-%20c_1%7D)
![m = \frac{5-1}{3\frac{3}{4} - \frac{3}{4}}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B5-1%7D%7B3%5Cfrac%7B3%7D%7B4%7D%20-%20%5Cfrac%7B3%7D%7B4%7D%7D)
![m = \frac{4}{3}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B4%7D%7B3%7D)
So: the equation is:
![n = m(c - c_1) + n_1](https://tex.z-dn.net/?f=n%20%3D%20m%28c%20-%20c_1%29%20%2B%20n_1)
This gives:
![n = \frac{4}{3}(c - \frac{3}{4}) + 1](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7D%28c%20-%20%5Cfrac%7B3%7D%7B4%7D%29%20%2B%201)
![n = \frac{4}{3}c - 1 + 1](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7Dc%20-%201%20%2B%201)
![n = \frac{4}{3}c](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7Dc)
So, the above represents the relationship between n and c.
<u>To complete the table</u>
When ![n = 2](https://tex.z-dn.net/?f=n%20%3D%202)
Substitute
in: ![n = \frac{4}{3}c](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7Dc)
![2 = \frac{4}{3}c](https://tex.z-dn.net/?f=2%20%3D%20%5Cfrac%7B4%7D%7B3%7Dc)
Make c the subject
![c = \frac{3*2}{4}](https://tex.z-dn.net/?f=c%20%3D%20%5Cfrac%7B3%2A2%7D%7B4%7D)
![c = \frac{3}{2}](https://tex.z-dn.net/?f=c%20%3D%20%5Cfrac%7B3%7D%7B2%7D)
When ![n = 3](https://tex.z-dn.net/?f=n%20%3D%203)
Substitute
in: ![n = \frac{4}{3}c](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7Dc)
![3 = \frac{4}{3} * c](https://tex.z-dn.net/?f=3%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%2A%20c)
Make c the subject
![c = \frac{3*3}{4}](https://tex.z-dn.net/?f=c%20%3D%20%5Cfrac%7B3%2A3%7D%7B4%7D)
![c = \frac{9}{4}](https://tex.z-dn.net/?f=c%20%3D%20%5Cfrac%7B9%7D%7B4%7D)
When ![c=3](https://tex.z-dn.net/?f=c%3D3)
Substitute
in: ![n = \frac{4}{3}c](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7Dc)
![n = \frac{4}{3} * 3](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%2A%203)
![n = 4](https://tex.z-dn.net/?f=n%20%3D%204)
So, the complete table is:
![c:0\ \ \ \frac{3}{4}\ \ \ \frac{3}{2}\ \ \ \frac{9}{4}\ \ \ 3\ \ \ 3\frac{3}{4}\\n:0\ \ \ \ 1\ \ \ 2\ \ \ 3\ \ \ \ 4\ \ \ \ 5](https://tex.z-dn.net/?f=c%3A0%5C%20%5C%20%5C%20%5Cfrac%7B3%7D%7B4%7D%5C%20%5C%20%5C%20%5Cfrac%7B3%7D%7B2%7D%5C%20%5C%20%5C%20%5Cfrac%7B9%7D%7B4%7D%5C%20%5C%20%5C%203%5C%20%5C%20%5C%203%5Cfrac%7B3%7D%7B4%7D%5C%5Cn%3A0%5C%20%5C%20%5C%20%5C%201%5C%20%5C%20%5C%202%5C%20%5C%20%5C%203%5C%20%5C%20%5C%20%5C%204%5C%20%5C%20%5C%20%5C%205)