1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
2 years ago
11

A train is moving at an average speed of 424/4 hm/h. How much distance will it cover in 16/5 hours?

Mathematics
1 answer:
gulaghasi [49]2 years ago
6 0

Answer:

339.2hm

Step-by-step explanation:

You might be interested in
WILL MARK BRAINLIEST HELP ASAP!!!
vovikov84 [41]

Answer:

Uhm thats physically impossible

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
3/4+7/12<br>adding and subtracting fractions with value
lesantik [10]

Answer:It would be 4/3 or 1 1/3. You can put 3/4 to 9/12 and then add.


6 0
3 years ago
What's the best quote your heard of?
Mars2501 [29]

Step-by-step explanation:

꧁§༺⚔A real friend is one who walks in when the rest of the world walks out.” ⚔༻§꧂

8 0
2 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Max points :)) 33 please help no explanation needed..
Xelga [282]
5(2y-4) - 3y = 1. 10y-20-3y=1. 7y-20=1. 7y=21. y =3. x = 2(3)-4. x = 2. x*y =6.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Do you have any tips or advice, how to do well or better at math? Because I struggle at math and I don't do we'll at it... ​
    5·2 answers
  • Write the absolute value equation if it has the following solutions. Hint: Your equation should be written as |x−b| =c. (Here b
    5·1 answer
  • Fill in the missing numbers to complete the factorization. Some of the numbers could be negative. Type the numbers in increasing
    15·2 answers
  • Samantha had 8 balloons. Jacob has 1/2 as many. How many does Jacob have?
    10·2 answers
  • What was the diameter of the tree?
    11·1 answer
  • If a coin is tossed twice find the probability of getting a) 2 heads b) atleast 1 head c) no heads
    14·2 answers
  • Using distance formula i tried this one for myself and just couldn't get it
    12·1 answer
  • Identify the type of function represented by f(x)=2(1/2)^x​
    7·2 answers
  • Debbie has at most $60 to spend on a clothes she wants to buy a pair of jeans for $22 and spend the rest on t-shirts each t-shir
    11·1 answer
  • Directions:Simplify the following monomials.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!