Answer:
inter atomic bonds
Explanation:
because it is loosely held
Answer:
0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).
Explanation:
<em>d = m/V,</em>
where, d is the density of the material (g/cm³).
m is the mass of the material (m = 28 g).
V is the volume of the material (V = 63.0 cm³).
<em>∴ d = m/V </em>= (28 g)/(63.0 cm³) = <em>0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).</em>
Answer:
A. releases a large amount of heat
Explanation:
A reaction is said to be spontaneous if it can proceed on its own without the addition of external energy. A spontaneous reaction is not determined by the length of time, because some spontaneous reactions are completed after a long period of time. They are exothermic in nature. An example is the conversion of graphite to carbon which takes a long period of time to complete. Spontaneous reactions are known to increase entropy in a system. Entropy is the rate of disorder in a system.
In the combustion of fire, energy is released to the surroundings as there is a decrease in energy. This is an example of a spontaneous reaction because it is an exothermic reaction, which causes an increase in entropy and a decrease in energy.
The complete balanced chemical reaction is written as:
AgNO3 + KCl ---> AgCl
+ KNO3
where AgCl is our
precipitate
So calculating for moles
of AgCl produced: MM AgCl = 143.5 g/mol
moles AgCl = 0.326 g /
(143.5 g/mol) = 2.27 x 10^-3 mol
we see that there is 1
mole of Ag per 1 mole of AgCl so:
moles Ag = 2.27 x 10^-3
mol
The molarity is simply
the ratio of number of moles over volume in Liters, therefore:
Molarity = 2.27 x 10^-3
mol / 0.0977 L
<span>Molarity = 0.0233 M</span>