Answer:
The order of reactivity of metals is as follows, Potassium > Sodium > Lithium > Calcium > Magnesium > Aluminium > Zinc > Iron > Copper > Silver > Gold.
Explanation:
The reactivity of elements (metals) towards water decreases towards the right in a period. It also increases down the group. But zinc is more reactive towards water than iron. Hence the correct order is:
Iron<Zinc<Magnesium<Sodium
Answer:
The correct answer is AMP+H2O→ Adenosine + pi
Explanation:
The above reaction is least energetic because there is no phosphoanhydride bond present with adenosine mono phosphate.Phospho anhydride bond is an energy rich bond.
As a result hydrolysis of AMP generates very little amount of energy in comparison to the hydrolysis of ATP and ADP.
Answer:
Explanation:
Of course you could do the separation chemically. Dissolve the salt up in water, pass thru a filter, wash the iron filings with ethanol, which would encourage the salt to precipitate from solution.
I do hope I helped you! :)
Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
Answer:
235/92U+10n→144/54Xe+90/38Sr+2/10n
Explanation:
- The nuclear reaction for the neutron-induced fission of u−235 to form xe−144 and sr−90 is represented by;
235/92U+10n→144/54Xe+90/38Sr+2/10n
- In nuclear fission reactions a heavy nuclide is split into two light nuclides and is coupled by the release of energy.