Answer:
m∠BCE = 28° and m∠ECD = 134°
Step-by-step explanation:
* Lets explain how to solve the problem
- The figure has three angles: ∠BCE , ∠ECD , and ∠BCD
- m∠ECD is six less than five times m∠BCE
- That means when we multiply measure of angle BCE by five and
then subtract six from this product the answer will be the measure
of angle ECD
∴ m∠ECD = 5 m∠BCE - 6 ⇒ (1)
∵ m∠BCD = m∠BCE + m∠ECD
∵ m∠BCD = 162°
∴ m∠BCE + m∠ECD = 162 ⇒ (2)
- Substitute equation (1) in equation (2) to replace angle ECD by
angle BCE
∴ m∠BCE + (5 m∠BCE - 6) = 162
- Add the like terms
∴ 6 m∠BCE - 6 = 162
- Add 6 to both sides
∴ 6 m∠BCE = 168
- Divide both sides by 6
∴ m∠BCE = 28°
- Substitute the measure of angle BCE in equation (1) to find the
measure of angle ECD
∵ m∠ECD = 5 m∠BCE - 6
∵ m∠BCE = 28°
∴ m∠ECD = 5(28) - 6 = 140 - 6 = 134°
* m∠BCE = 28° and m∠ECD = 134°
Y = mx + bDomainAll the X values in a functionRange<span>All the Y values in a function</span>
Answer:
19/20
Step-by-step explanation:
7/10+1/4
=14/20+5/20
=19/20
Hello,
Here is your answer:
The proper answer to this question is "37.5".
Your answer is 37.5!
If you need anymore help feel free to ask me!
Hope this helps!
Answer:
- B) One solution
- The solution is (2, -2)
- The graph is below.
=========================================================
Explanation:
I used GeoGebra to graph the two lines. Desmos is another free tool you can use. There are other graphing calculators out there to choose from as well.
Once you have the two lines graphed, notice that they cross at (2, -2) which is where the solution is located. This point is on both lines, so it satisfies both equations simultaneously. There's only one such intersection point, so there's only one solution.
--------
To graph these equations by hand, plug in various x values to find corresponding y values. For instance, if you plugged in x = 0 into the first equation, then,
y = (-3/2)x+1
y = (-3/2)*0+1
y = 1
The point (0,1) is on the first line. The point (2,-2) is also on this line. Draw a straight line through the two points to finish that equation. The other equation is handled in a similar fashion.