1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
2 years ago
11

What does knowing the temperature of a substance allow you to describe

Chemistry
1 answer:
il63 [147K]2 years ago
8 0

Answer:

Ur answer is C. Their average kinetic energy

Explanation:

In chemistry, we define the temperature of a substance as the average kinetic energy of all the atoms or molecules of that substance. Not all of the particles of a substance have the same kinetic energy. ... It is the average kinetic energy of the particles that thermometers measure and we record as the temperature.

You might be interested in
1.15 g of a metallic element needs 300 cm3 of oxygen for complete reaction, at 298 K and 1 atm
sashaice [31]
1) Calculate the number of moles of O2 (g) in 300 cm^3 of gas at 298 k and 1 atm


Ideal gas equation: pV = nRT => n = pV / RT


R = 0.0821 atm*liter/K*mol

V = 300 cm^3 = 0.300 liter

T = 298 K

p = 1 atm


=> n = 1 atm * 0.300 liter / [ (0.0821 atm*liter /K*mol) * 298K] = 0.01226 mol


2) The reaction of a metal with O2(g) to form an ionic compound (with O2- ions) is of the type


X (+) + O2 (g) ---> X2O          or   


2 X(2+) + O2(g) ----> X2O2 = 2XO     or


4X(3+) + 3O2(g) ---> 2X2O3


 
In the first case, 1 mol of metal react with 1 mol of O2(g); in the second case, 2 moles of metal react with 1 mol of O2(g); in the third, 4 moles of X react with 3 moles of O2(g)



So, lets probe those 3 cases.


3) Case 1: 1 mol of metal X / 1 mol O2(g) = x moles / 0.01226 mol

=> x = 0.01226 moles of metal X


Now you can calculate the atomic mass of the hypotethical metal:

1.15 grams / 0.01226 mol = 93.8 g / mol


That does not correspond to any of the metal with valence 1+


So, now probe the case 2.



4) Case 2:


2moles X metal / 1 mol O2(g) = x / 0.01226 mol


=> x = 2 * 0.01226 = 0.02452 mol


And the atomic mass of the metal is: 1.15 g / 0.02452 mol = 46.9 g/mol


That is similar to the atomic mass of titanium which is 47.9 g / mol and whose valece is 2+.


4) Case 3


4 mol meta X / 3 mol O2 = x / 0.01226 => x = 0.01226 * 4 / 3 = 0.01635 


atomic mass = 1.15 g / 0.01635 mol = 70.33 g/mol


That does not correspond to any metal.


Conclusion: the identity of the metallic element could be titanium.
5 0
3 years ago
(a) Compute the radius r of an impurity atom that will just fit into an FCC octahedral site in terms of the atomic radius R of t
11Alexandr11 [23.1K]

Answer:

a

The radius of an impurity atom occupying FCC octahedral site is 0.414{\rm{R}}

b

The radius of an impurity atom occupying FCC tetrahedral site is 0.225{\rm{R}} .

Explanation:

In order to get a better understanding of the solution we need to understand that the concept used to solve this question is based on the voids present in a unit cell. Looking at the fundamentals

An impurity atom in a unit cell occupies the void spaces. In FCC type of structure, there are two types of voids present. First, an octahedral void is a hole created when six spheres touch each other usually placed at the body center. On the other hand, a tetrahedral void is generated when four spheres touch each other and is placed along the body diagonal.

Step 1 of 2

(1)

The position of an atom that fits in the octahedral site with radius \left( r \right)is as shown in the first uploaded image.

In the above diagram, R is the radius of atom and a is the edge length of the unit cell.

The radius of the impurity is as follows:

2r=a-2R------(A)

The relation between radius of atom and edge length is calculated using Pythagoras Theorem is shown as follows:

Consider \Delta {\rm{XYZ}} as follows:

(XY)^ 2 =(YZ) ^2 +(XZ)^2

Substitute XY as{\rm{R}} + 2{\rm{R + R}} and {\rm{YZ}} as a and {\rm{ZX}} as a in above equation as follows:

(R+2R+R) ^2 =a ^2 +a^ 2\\16R ^2 =2a^ 2\\ a =2\sqrt{2R}

Substitute value of aa in equation (A) as follows:

r= \frac{2\sqrt{2}R -2R }{2} \\ =\sqrt{2} -1R\\ = 0.414R

The radius of an impurity atom occupying FCC octahedral site is 0.414{\rm{R}}

Note

An impure atom occupies the octahedral site, the relation between the radius of atom, edge length of unit cell and impure atom is calculated. The relation between the edge length and radius of atom is calculated using Pythagoras Theorem. This further enables in finding the radius of an impure atom.  

Step 2 of 2

(2)

The impure atom in FCC tetrahedral site is present at the body diagonal.

The position of an atom that fits in the octahedral site with radius rr is shown on the second uploaded image :

In the above diagram, R is the radius of atom and a is the edge length of the unit cell.

The body diagonal is represented by AD.

The relation between the radius of impurity, radius of atom and body diagonal is shown as follows:

AD=2R+2r----(B)

   In    \Delta {\rm{ABC}},

(AB) ^2 =(AC) ^2 +(BC) ^2

For calculation of AD, AB is determined using Pythagoras theorem.

Substitute {\rm{AC}} as a and {\rm{BC}} as a in above equation as follows:

(AB) ^2 =a ^2 +a ^2

AB= \sqrt{2a} ----(1)

Also,

AB=2R

Substitute value of 2{\rm{R}} for {\rm{AB}} in equation (1) as follows:

2R= \sqrt{2} aa = \sqrt{2} R

Therefore, the length of body diagonal is calculated using Pythagoras Theorem in \Delta {\rm{ABD}} as follows:

(AD) ^2 =(AB) ^2 +(BD)^2

Substitute {\rm{AB}} as \sqrt 2a   and {\rm{BD}} as a in above equation as follows:

(AD) ^2 =( \sqrt 2a) ^2 +(a) ^2 AD= \sqrt3a

For calculation of radius of an impure atom in FCC tetrahedral site,

Substitute value of AD in equation (B) as follows:

\sqrt 3a=2R+2r

Substitute a as \sqrt 2{\rm{R}} in above equation as follows:

( \sqrt3 )( \sqrt2 )R=2R+2r\\\\

r = \frac{2.4494R-2R}{2}\\

=0.2247R

\approx 0.225R

The radius of an impurity atom occupying FCC tetrahedral site is 0.225{\rm{R}} .

Note

An impure atom occupies the tetrahedral site, the relation between the radius of atom, edge length of unit cell and impure atom is calculated. The length of body diagonal is calculated using Pythagoras Theorem. The body diagonal is equal to the sum of the radii of two atoms. This helps in determining the relation between the radius of impure atom and radius of atom present in the unit cell.

7 0
3 years ago
Acidic solitions change blue litmus payer to<br>A.pink <br>B.yellow <br>C.red<br>D.colorless​
Ad libitum [116K]

Answer:

D probably

Explanation:

4 0
3 years ago
How many hours will it take for the concentration of methyl isonitrile to drop to 14.0 %% of its initial value?
tiny-mole [99]

This is an incomplete question, here is a complete question.

The rearrangement of methyl isonitrile (CH₃NC) to acetonitrile (CH₃NC) is a first-order reaction and has a rate constant of 5.11 × 10⁻⁵ s⁻¹ at 472 K. If the initial concentration of CH₃NC is 3.00 × 10⁻² M :

How many hours will it take for the concentration of methyl isonitrile to drop to 14.0 % of its initial value?

Answer : The time taken will be, 10.7 hours

Explanation :

Expression for rate law for first order kinetics is given by:

t=\frac{2.303}{k}\log\frac{a}{a-x}

where,

k = rate constant  = 5.11\times 10^{-5}s^{-1}

t = time passed by the sample  = ?

a = let initial amount of the reactant  = 100

a - x = amount left after decay process = 14 % of 100 = 14

Now put all the given values in above equation, we get

t=\frac{2.303}{5.11\times 10^{-5}}\log\frac{100}{14}

t=38482.72s=\frac{38482.72}{3600}=10.7hr

Therefore, the time taken will be, 10.7 hours

7 0
3 years ago
How mariy molecules of water are in a 500.3 g sample?
JulijaS [17]

Answer:

1.67×10^25 molecules

Explanation:

No of molecules = no of moles × Avogadros number

No of moles= mass in gram / molar mass

No of moles of water in given sample = 500.3/18

= 27.79 moles

No of molecules = 27.79× 6.02×10^ 23

= 167.32×10^23 or 1.67×10^25

3 0
3 years ago
Other questions:
  • Consider the following numbered processes: 1. A → 2B 2. B → C + D 3. E → 2D ΔH for the process A → 2C + E is
    12·1 answer
  • What is the limiting reagent when 49.84 g of nitrogen react with 10.7 g of hydrogen to make ammonia
    6·1 answer
  • Suppose 10 mg of deprenyl is diluted in 10 mL of water. What is the a) mass fraction and b) mol fraction of deprenyl in the solu
    7·1 answer
  • A car with a mass of 1.1 × 103 kilograms hits a stationary truck with a mass of 2.3 × 103 kilograms from the rear end. The initi
    6·2 answers
  • The environment with the greatest biodiversity is the one with the greatest variety of
    12·1 answer
  • Suppose now that you wanted to determine the density of a small crystal to confirm that it is sulfur. From the literature, you k
    14·1 answer
  • Please helpppppppppppppppppppppppp
    14·1 answer
  • Consider the following equilibrium:
    10·1 answer
  • If you have an atom or copper, an ion of copper and an isotope of copper, what
    15·1 answer
  • Why are three-dimensional models useful for understanding the lunar phases?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!