Answer:
4.5 kilograms of silicon dioxide is required to produce 3.00 kg of SiC.
Explanation:
The balanced equation for the reaction between silicon dioxide and carbon at high temperature is given as:

1 mole silicon dioxide reacts with 3 moles of carbon to give 1 moles of silicon carbide and 2 moles of carbon monoxide.
Mass of SiC = 3.00kg = 3000.00 g
1 kg = 1000 g
Molecular mass of SiC = 40 g/mol
Moles of SiC = 
According to reaction, 1 mole of SiC is produced from 1 mole of silicon dioxide.
Then 75 moles of SiC will be produce from:
of silicon dioxide.
mass of 75 moles of silicon dioxde:

4.5 kilograms of silicon dioxide is required to produce 3.00 kg of SiC.
Answer:
D. Surface tension.
Explanation:
Surface tension is defined as the energy required to increase the surface area of a liquid by a unit amount.
The surface tension of a liquid results from an imbalance of intermolecular attractive forces, the cohesive forces between molecules:
A molecule in a liquid experiences cohesive forces with other molecules in all directions while molecules at the surface of a liquid experiences only net inward cohesive forces.
Answer:
The element will be 
Explanation:
Given that,
Number of proton = 80
Number of neutron = 81
Number of electron = 79
We know that,
The atomic number is equal to the number of proton.
So, the atomic number is 80.
According to atomic number,
The element will be mercury.
We need to calculate the atomic mass
Using formula of atomic mass

Put the value into the formula


We need to find the element
Using atomic mass and atomic number


So, the element will be

Put the value of A and Z
Hence, The element will be 